Commit cda3bca5 authored by A. Unique TensorFlower's avatar A. Unique TensorFlower
Browse files

Updating READMEs for DLRM Model.

PiperOrigin-RevId: 375729667
parent 3d03e675
......@@ -26,4 +26,7 @@
* [shapemask](vision/detection): An object detection and instance segmentation model using shape priors. See [Tensorboard.dev training metrics](https://tensorboard.dev/experiment/ZbXgVoc6Rf6mBRlPj0JpLA).
## Recommendation
* [dlrm](recommendation/ranking): [Deep Learning Recommendation Model for
Personalization and Recommendation Systems](https://arxiv.org/abs/1906.00091).
* [dcn v2](recommendation/ranking): [Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/abs/2008.13535).
* [ncf](recommendation): Neural Collaborative Filtering. See [Tensorboard.dev training metrics](https://tensorboard.dev/experiment/0k3gKjZlR1ewkVTRyLB6IQ).
......@@ -16,8 +16,8 @@ When training on TPUs we use
[TPUEmbedding layer](https://github.com/tensorflow/recommenders/blob/main/tensorflow_recommenders/layers/embedding/tpu_embedding_layer.py)
for categorical features. TPU embedding supports large embedding tables with
fast lookup, the size of embedding tables scales linearly with the size of TPU
pod. We can have up to 96 GB embedding tables for TPU v3-8 and 6.14 TB for
v3-512 and 24.6 TB for TPU Pod v3-2048.
pod. We can have up to 90 GB embedding tables for TPU v3-8 and 5.6 TB for
v3-512 and 22,4 TB for TPU Pod v3-2048.
The Model code is in
[TensorFlow Recommenders](https://github.com/tensorflow/recommenders/tree/main/tensorflow_recommenders/experimental/models)
......@@ -30,7 +30,7 @@ Recommenders](https://www.tensorflow.org/recommenders) library.
```bash
git clone https://github.com/tensorflow/models.git
pip install -r models/official/requirements.txt
pip install tensorflow-recommenders
export PYTHONPATH=$PYTHONPATH:$(pwd)/models
```
......@@ -98,10 +98,10 @@ export EXPERIMENT_NAME=my_experiment_name
export BUCKET_NAME="gs://my_dlrm_bucket"
export DATA_DIR="${BUCKET_NAME}/data"
python3 official/recommendation/ranking/main.py --mode=train_and_eval \
python3 models/official/recommendation/ranking/train.py --mode=train_and_eval \
--model_dir=${BUCKET_NAME}/model_dirs/${EXPERIMENT_NAME} --params_override="
runtime:
distribution_strategy='tpu'
distribution_strategy: 'tpu'
task:
use_synthetic_data: false
train_data:
......@@ -125,7 +125,7 @@ trainer:
checkpoint_interval: 100000
validation_steps: 5440
train_steps: 256054
steps_per_execution: 1000
steps_per_loop: 1000
"
```
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment