Commit cb2528eb authored by Hongkun Yu's avatar Hongkun Yu Committed by A. Unique TensorFlower
Browse files

Internal change

PiperOrigin-RevId: 337927475
parent 291b1ba0
...@@ -15,8 +15,7 @@ ...@@ -15,8 +15,7 @@
# ============================================================================== # ==============================================================================
"""Defines the base task abstraction.""" """Defines the base task abstraction."""
import abc import abc
import functools from typing import Optional
from typing import Any, Callable, Optional
from absl import logging from absl import logging
import tensorflow as tf import tensorflow as tf
...@@ -25,9 +24,9 @@ import tensorflow as tf ...@@ -25,9 +24,9 @@ import tensorflow as tf
class Task(tf.Module, metaclass=abc.ABCMeta): class Task(tf.Module, metaclass=abc.ABCMeta):
"""A single-replica view of training procedure. """A single-replica view of training procedure.
Tasks provide artifacts for training/evalution procedures, including Tasks provide artifacts for training/validation procedures, including
loading/iterating over Datasets, initializing the model, calculating the loss loading/iterating over Datasets, training/validation steps, calculating the
and customized metrics with reduction. loss and customized metrics with reduction.
""" """
# Special keys in train/validate step returned logs. # Special keys in train/validate step returned logs.
...@@ -91,41 +90,6 @@ class Task(tf.Module, metaclass=abc.ABCMeta): ...@@ -91,41 +90,6 @@ class Task(tf.Module, metaclass=abc.ABCMeta):
A model instance. A model instance.
""" """
def compile_model(self,
model: tf.keras.Model,
optimizer: tf.keras.optimizers.Optimizer,
loss=None,
train_step: Optional[Callable[..., Any]] = None,
validation_step: Optional[Callable[..., Any]] = None,
**kwargs) -> tf.keras.Model:
"""Compiles the model with objects created by the task.
The method should not be used in any customized training implementation.
Args:
model: a keras.Model.
optimizer: the keras optimizer.
loss: a callable/list of losses.
train_step: optional train step function defined by the task.
validation_step: optional validation_step step function defined by the
task.
**kwargs: other kwargs consumed by keras.Model compile().
Returns:
a compiled keras.Model.
"""
if bool(loss is None) == bool(train_step is None):
raise ValueError("`loss` and `train_step` should be exclusive to "
"each other.")
model.compile(optimizer=optimizer, loss=loss, **kwargs)
if train_step:
model.train_step = functools.partial(
train_step, model=model, optimizer=model.optimizer)
if validation_step:
model.test_step = functools.partial(validation_step, model=model)
return model
@abc.abstractmethod @abc.abstractmethod
def build_inputs(self, def build_inputs(self,
params, params,
...@@ -244,9 +208,9 @@ class Task(tf.Module, metaclass=abc.ABCMeta): ...@@ -244,9 +208,9 @@ class Task(tf.Module, metaclass=abc.ABCMeta):
logs = {self.loss: loss} logs = {self.loss: loss}
if metrics: if metrics:
self.process_metrics(metrics, labels, outputs) self.process_metrics(metrics, labels, outputs)
logs.update({m.name: m.result() for m in metrics}) if model.compiled_metrics:
elif model.compiled_metrics:
self.process_compiled_metrics(model.compiled_metrics, labels, outputs) self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
logs.update({m.name: m.result() for m in metrics or []})
logs.update({m.name: m.result() for m in model.metrics}) logs.update({m.name: m.result() for m in model.metrics})
return logs return logs
...@@ -273,9 +237,9 @@ class Task(tf.Module, metaclass=abc.ABCMeta): ...@@ -273,9 +237,9 @@ class Task(tf.Module, metaclass=abc.ABCMeta):
logs = {self.loss: loss} logs = {self.loss: loss}
if metrics: if metrics:
self.process_metrics(metrics, labels, outputs) self.process_metrics(metrics, labels, outputs)
logs.update({m.name: m.result() for m in metrics}) if model.compiled_metrics:
elif model.compiled_metrics:
self.process_compiled_metrics(model.compiled_metrics, labels, outputs) self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
logs.update({m.name: m.result() for m in metrics or []})
logs.update({m.name: m.result() for m in model.metrics}) logs.update({m.name: m.result() for m in model.metrics})
return logs return logs
......
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tensorflow_models.core.base_task."""
import functools
from absl.testing import parameterized
import tensorflow as tf
from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import strategy_combinations
from official.utils.testing import mock_task
def all_strategy_combinations():
return combinations.combine(
distribution=[
strategy_combinations.default_strategy,
strategy_combinations.tpu_strategy,
strategy_combinations.one_device_strategy_gpu,
],
mode='eager',
)
class TaskKerasTest(tf.test.TestCase, parameterized.TestCase):
@combinations.generate(all_strategy_combinations())
def test_task_with_step_override(self, distribution):
with distribution.scope():
task = mock_task.MockTask()
model = task.build_model()
model = task.compile_model(
model,
optimizer=tf.keras.optimizers.SGD(learning_rate=1e-3),
metrics=task.build_metrics(),
train_step=task.train_step,
validation_step=task.validation_step)
dataset = task.build_inputs(params=None)
logs = model.fit(dataset, epochs=1, steps_per_epoch=2)
self.assertIn('loss', logs.history)
self.assertIn('acc', logs.history)
# Without specifying metrics through compile.
with distribution.scope():
train_metrics = task.build_metrics(training=True)
val_metrics = task.build_metrics(training=False)
model = task.build_model()
model = task.compile_model(
model,
optimizer=tf.keras.optimizers.SGD(learning_rate=1e-3),
train_step=functools.partial(task.train_step, metrics=train_metrics),
validation_step=functools.partial(
task.validation_step, metrics=val_metrics))
logs = model.fit(dataset, epochs=1, steps_per_epoch=2)
self.assertIn('loss', logs.history)
self.assertIn('acc', logs.history)
def test_task_with_fit(self):
task = mock_task.MockTask()
model = task.build_model()
model = task.compile_model(
model,
optimizer=tf.keras.optimizers.SGD(learning_rate=1e-3),
loss=tf.keras.losses.CategoricalCrossentropy(),
metrics=task.build_metrics())
dataset = task.build_inputs(params=None)
logs = model.fit(dataset, epochs=1, steps_per_epoch=2)
self.assertIn('loss', logs.history)
self.assertIn('acc', logs.history)
self.assertLen(model.evaluate(dataset, steps=1), 2)
def test_task_invalid_compile(self):
task = mock_task.MockTask()
model = task.build_model()
with self.assertRaises(ValueError):
_ = task.compile_model(
model,
optimizer=tf.keras.optimizers.SGD(learning_rate=1e-3),
loss=tf.keras.losses.CategoricalCrossentropy(),
metrics=task.build_metrics(),
train_step=task.train_step)
if __name__ == '__main__':
tf.test.main()
...@@ -78,8 +78,7 @@ class TrainerTest(tf.test.TestCase, parameterized.TestCase): ...@@ -78,8 +78,7 @@ class TrainerTest(tf.test.TestCase, parameterized.TestCase):
with distribution.scope(): with distribution.scope():
trainer = self.create_test_trainer(self._config) trainer = self.create_test_trainer(self._config)
logs = trainer.evaluate(tf.convert_to_tensor(5, dtype=tf.int32)) logs = trainer.evaluate(tf.convert_to_tensor(5, dtype=tf.int32))
self.assertIn('validation_loss', logs) self.assertEqual(logs['counter'], 5. * distribution.num_replicas_in_sync)
self.assertEqual(logs['acc'], 5. * distribution.num_replicas_in_sync)
@combinations.generate( @combinations.generate(
combinations.combine( combinations.combine(
......
...@@ -131,24 +131,6 @@ class QuestionAnsweringTaskTest(tf.test.TestCase, parameterized.TestCase): ...@@ -131,24 +131,6 @@ class QuestionAnsweringTaskTest(tf.test.TestCase, parameterized.TestCase):
version_2_with_negative)) version_2_with_negative))
self._run_task(config) self._run_task(config)
def test_task_with_fit(self):
config = question_answering.QuestionAnsweringConfig(
model=question_answering.ModelConfig(encoder=self._encoder_config),
train_data=self._train_data_config,
validation_data=self._get_validation_data_config())
task = question_answering.QuestionAnsweringTask(config)
model = task.build_model()
model = task.compile_model(
model,
optimizer=tf.keras.optimizers.SGD(lr=0.1),
train_step=task.train_step,
metrics=[tf.keras.metrics.SparseCategoricalAccuracy(name="accuracy")])
dataset = task.build_inputs(config.train_data)
logs = model.fit(dataset, epochs=1, steps_per_epoch=2)
self.assertIn("loss", logs.history)
self.assertIn("start_positions_accuracy", logs.history)
self.assertIn("end_positions_accuracy", logs.history)
def _export_bert_tfhub(self): def _export_bert_tfhub(self):
bert_config = configs.BertConfig( bert_config = configs.BertConfig(
vocab_size=30522, vocab_size=30522,
......
...@@ -210,20 +210,6 @@ class SentencePredictionTaskTest(tf.test.TestCase, parameterized.TestCase): ...@@ -210,20 +210,6 @@ class SentencePredictionTaskTest(tf.test.TestCase, parameterized.TestCase):
outputs = self._run_task(config) outputs = self._run_task(config)
self.assertEqual(outputs["sentence_prediction"].shape.as_list(), [8, 1]) self.assertEqual(outputs["sentence_prediction"].shape.as_list(), [8, 1])
def test_task_with_fit(self):
config = sentence_prediction.SentencePredictionConfig(
model=self.get_model_config(2), train_data=self._train_data_config)
task = sentence_prediction.SentencePredictionTask(config)
model = task.build_model()
model = task.compile_model(
model,
optimizer=tf.keras.optimizers.SGD(lr=0.1),
train_step=task.train_step,
metrics=task.build_metrics())
dataset = task.build_inputs(config.train_data)
logs = model.fit(dataset, epochs=1, steps_per_epoch=2)
self.assertIn("loss", logs.history)
def _export_bert_tfhub(self): def _export_bert_tfhub(self):
bert_config = configs.BertConfig( bert_config = configs.BertConfig(
vocab_size=30522, vocab_size=30522,
......
...@@ -96,24 +96,6 @@ class TaggingTest(tf.test.TestCase): ...@@ -96,24 +96,6 @@ class TaggingTest(tf.test.TestCase):
task.validation_step(next(iterator), model, metrics=metrics) task.validation_step(next(iterator), model, metrics=metrics)
task.initialize(model) task.initialize(model)
def test_task_with_fit(self):
config = tagging.TaggingConfig(
model=tagging.ModelConfig(encoder=self._encoder_config),
train_data=self._train_data_config,
class_names=["O", "B-PER", "I-PER"])
task = tagging.TaggingTask(config)
model = task.build_model()
model = task.compile_model(
model,
optimizer=tf.keras.optimizers.SGD(lr=0.1),
train_step=task.train_step,
metrics=[tf.keras.metrics.SparseCategoricalAccuracy(name="accuracy")])
dataset = task.build_inputs(config.train_data)
logs = model.fit(dataset, epochs=1, steps_per_epoch=2)
self.assertIn("loss", logs.history)
self.assertIn("accuracy", logs.history)
def _export_bert_tfhub(self): def _export_bert_tfhub(self):
bert_config = configs.BertConfig( bert_config = configs.BertConfig(
vocab_size=30522, vocab_size=30522,
......
...@@ -51,7 +51,9 @@ class MockTask(base_task.Task): ...@@ -51,7 +51,9 @@ class MockTask(base_task.Task):
def build_model(self, *arg, **kwargs): def build_model(self, *arg, **kwargs):
inputs = tf.keras.layers.Input(shape=(2,), name="random", dtype=tf.float32) inputs = tf.keras.layers.Input(shape=(2,), name="random", dtype=tf.float32)
outputs = tf.keras.layers.Dense(1)(inputs) outputs = tf.keras.layers.Dense(
1, bias_initializer=tf.keras.initializers.Ones())(
inputs)
network = tf.keras.Model(inputs=inputs, outputs=outputs) network = tf.keras.Model(inputs=inputs, outputs=outputs)
return MockModel(network) return MockModel(network)
...@@ -59,6 +61,11 @@ class MockTask(base_task.Task): ...@@ -59,6 +61,11 @@ class MockTask(base_task.Task):
del training del training
return [tf.keras.metrics.Accuracy(name="acc")] return [tf.keras.metrics.Accuracy(name="acc")]
def validation_step(self, inputs, model: tf.keras.Model, metrics=None):
logs = super().validation_step(inputs, model, metrics)
logs["counter"] = tf.ones((1,), dtype=tf.float32)
return logs
def build_inputs(self, params): def build_inputs(self, params):
def generate_data(_): def generate_data(_):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment