"git@developer.sourcefind.cn:OpenDAS/torch-scatter.git" did not exist on "f32831642a2e8f001c04acad10564e342211eeb1"
Commit cadd143a authored by Vighnesh Birodkar's avatar Vighnesh Birodkar Committed by TF Object Detection Team
Browse files

Release deepmac changes to CenterNet proto.

PiperOrigin-RevId: 370255238
parent 14cc4985
...@@ -347,6 +347,59 @@ message CenterNet { ...@@ -347,6 +347,59 @@ message CenterNet {
optional TemporalOffsetEstimation temporal_offset_task = 12; optional TemporalOffsetEstimation temporal_offset_task = 12;
// Mask prediction support using DeepMAC. See https://arxiv.org/abs/2104.00613
message DeepMACMaskEstimation {
// The loss used for penalizing mask predictions.
optional ClassificationLoss classification_loss = 1;
// Weight of mask prediction loss
optional float task_loss_weight = 2 [default = 1.0];
// The dimension of the per-instance embedding.
optional int32 dim = 3 [default = 256];
// The dimension of the per-pixel embedding
optional int32 pixel_embedding_dim = 4 [default=16];
// If set, masks are only kept for classes listed here. Masks are deleted
// for all other classes. Note that this is only done at training time, eval
// behavior is unchanged.
repeated int32 allowed_masked_classes_ids = 5;
// The size of cropped pixel embedding that goes into the 2D mask prediction
// network (RoI align).
optional int32 mask_size = 6 [default=32];
// If set to a positive value, we subsample instances by this amount to
// save memory during training.
optional int32 mask_num_subsamples = 67[default=-1];
// Whether or not to use (x, y) coordinates as input to mask net.
optional bool use_xy = 8 [default=true];
// Defines the kind of architecture we want to use for mask network.
optional string network_type = 9 [default="hourglass52"];
// Whether or not we want to use instance embedding in mask network.
optional bool use_instance_embedding = 10 [default=true];
// Number of channels in the inital block of the mask prediction network.
optional int32 num_init_channels = 11 [default=64];
// Whether or not to predict masks at full resolution. If true, we predict
// masks at the resolution of the output stride. Otherwise, masks are
// predicted at resolution defined by mask_size
optional bool predict_full_resolution_masks = 12 [default=false];
// If predict_full_resolution_masks is set, this parameter controls the size
// of cropped masks returned by post-process. To be compatible with the rest
// of the API, masks are always cropped and resized according to detected
// boxes in postprocess.
optional int32 postprocess_crop_size = 13 [default=256];
}
optional DeepMACMaskEstimation deepmac_mask_estimation = 14;
// CenterNet does not apply conventional post processing operations such as // CenterNet does not apply conventional post processing operations such as
// non max suppression as it applies a max-pool operator on box centers. // non max suppression as it applies a max-pool operator on box centers.
// However, in some cases we observe the need to remove duplicate predictions // However, in some cases we observe the need to remove duplicate predictions
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment