"examples/vscode:/vscode.git/clone" did not exist on "9dc84448aca9718f9e1175cf83a6a9c10467882a"
Commit c9da7a38 authored by A. Unique TensorFlower's avatar A. Unique TensorFlower
Browse files

Merge pull request #9020 from srihari-humbarwadi:master

PiperOrigin-RevId: 324245883
parents 24501315 0e9d5840
......@@ -63,8 +63,8 @@ def metrics_as_dict(metric):
"""Puts input metric(s) into a list.
Args:
metric: metric(s) to be put into the list. `metric` could be a object, a
list or a dict of tf.keras.metrics.Metric or has the `required_method`.
metric: metric(s) to be put into the list. `metric` could be an object, a
list, or a dict of tf.keras.metrics.Metric or has the `required_method`.
Returns:
A dictionary of valid metrics.
......@@ -351,7 +351,8 @@ class DistributedExecutor(object):
train_input_fn: (params: dict) -> tf.data.Dataset training data input
function.
eval_input_fn: (Optional) same type as train_input_fn. If not None, will
trigger evaluting metric on eval data. If None, will not run eval step.
trigger evaluating metric on eval data. If None, will not run the eval
step.
model_dir: the folder path for model checkpoints.
total_steps: total training steps.
iterations_per_loop: train steps per loop. After each loop, this job will
......@@ -672,7 +673,7 @@ class DistributedExecutor(object):
raise ValueError('if `eval_metric_fn` is specified, '
'eval_metric_fn must be a callable.')
old_phrase = tf.keras.backend.learning_phase()
old_phase = tf.keras.backend.learning_phase()
tf.keras.backend.set_learning_phase(0)
params = self._params
strategy = self._strategy
......@@ -710,7 +711,7 @@ class DistributedExecutor(object):
summary_writer(metrics=eval_metric_result, step=current_step)
reset_states(eval_metric)
tf.keras.backend.set_learning_phase(old_phrase)
tf.keras.backend.set_learning_phase(old_phase)
return eval_metric_result, current_step
def predict(self):
......@@ -760,7 +761,7 @@ class ExecutorBuilder(object):
Args:
strategy_type: string. One of 'tpu', 'mirrored', 'multi_worker_mirrored'.
If None. User is responsible to set the strategy before calling
If None, the user is responsible to set the strategy before calling
build_executor(...).
strategy_config: necessary config for constructing the proper Strategy.
Check strategy_flags_dict() for examples of the structure.
......
......@@ -449,7 +449,7 @@ class RetinanetBoxLoss(object):
num_positives: number of positive examples in the minibatch.
Returns:
an integar tensor representing total box regression loss.
an integer tensor representing total box regression loss.
"""
# Sums all positives in a batch for normalization and avoids zero
# num_positives_sum, which would lead to inf loss during training
......@@ -457,7 +457,6 @@ class RetinanetBoxLoss(object):
box_losses = []
for level in box_outputs.keys():
# Onehot encoding for classification labels.
box_targets_l = labels[level]
box_losses.append(
self.box_loss(box_outputs[level], box_targets_l, num_positives_sum))
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment