Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
c8a12135
Commit
c8a12135
authored
Jul 31, 2020
by
A. Unique TensorFlower
Browse files
Merge pull request #9020 from srihari-humbarwadi:master
PiperOrigin-RevId: 324245883
parents
4ebcdbf0
0e9d5840
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
8 additions
and
8 deletions
+8
-8
official/modeling/training/distributed_executor.py
official/modeling/training/distributed_executor.py
+7
-6
official/vision/detection/modeling/losses.py
official/vision/detection/modeling/losses.py
+1
-2
No files found.
official/modeling/training/distributed_executor.py
View file @
c8a12135
...
@@ -63,8 +63,8 @@ def metrics_as_dict(metric):
...
@@ -63,8 +63,8 @@ def metrics_as_dict(metric):
"""Puts input metric(s) into a list.
"""Puts input metric(s) into a list.
Args:
Args:
metric: metric(s) to be put into the list. `metric` could be a object, a
metric: metric(s) to be put into the list. `metric` could be a
n
object, a
list or a dict of tf.keras.metrics.Metric or has the `required_method`.
list
,
or a dict of tf.keras.metrics.Metric or has the `required_method`.
Returns:
Returns:
A dictionary of valid metrics.
A dictionary of valid metrics.
...
@@ -351,7 +351,8 @@ class DistributedExecutor(object):
...
@@ -351,7 +351,8 @@ class DistributedExecutor(object):
train_input_fn: (params: dict) -> tf.data.Dataset training data input
train_input_fn: (params: dict) -> tf.data.Dataset training data input
function.
function.
eval_input_fn: (Optional) same type as train_input_fn. If not None, will
eval_input_fn: (Optional) same type as train_input_fn. If not None, will
trigger evaluting metric on eval data. If None, will not run eval step.
trigger evaluating metric on eval data. If None, will not run the eval
step.
model_dir: the folder path for model checkpoints.
model_dir: the folder path for model checkpoints.
total_steps: total training steps.
total_steps: total training steps.
iterations_per_loop: train steps per loop. After each loop, this job will
iterations_per_loop: train steps per loop. After each loop, this job will
...
@@ -672,7 +673,7 @@ class DistributedExecutor(object):
...
@@ -672,7 +673,7 @@ class DistributedExecutor(object):
raise
ValueError
(
'if `eval_metric_fn` is specified, '
raise
ValueError
(
'if `eval_metric_fn` is specified, '
'eval_metric_fn must be a callable.'
)
'eval_metric_fn must be a callable.'
)
old_ph
r
ase
=
tf
.
keras
.
backend
.
learning_phase
()
old_phase
=
tf
.
keras
.
backend
.
learning_phase
()
tf
.
keras
.
backend
.
set_learning_phase
(
0
)
tf
.
keras
.
backend
.
set_learning_phase
(
0
)
params
=
self
.
_params
params
=
self
.
_params
strategy
=
self
.
_strategy
strategy
=
self
.
_strategy
...
@@ -710,7 +711,7 @@ class DistributedExecutor(object):
...
@@ -710,7 +711,7 @@ class DistributedExecutor(object):
summary_writer
(
metrics
=
eval_metric_result
,
step
=
current_step
)
summary_writer
(
metrics
=
eval_metric_result
,
step
=
current_step
)
reset_states
(
eval_metric
)
reset_states
(
eval_metric
)
tf
.
keras
.
backend
.
set_learning_phase
(
old_ph
r
ase
)
tf
.
keras
.
backend
.
set_learning_phase
(
old_phase
)
return
eval_metric_result
,
current_step
return
eval_metric_result
,
current_step
def
predict
(
self
):
def
predict
(
self
):
...
@@ -760,7 +761,7 @@ class ExecutorBuilder(object):
...
@@ -760,7 +761,7 @@ class ExecutorBuilder(object):
Args:
Args:
strategy_type: string. One of 'tpu', 'mirrored', 'multi_worker_mirrored'.
strategy_type: string. One of 'tpu', 'mirrored', 'multi_worker_mirrored'.
If None
. U
ser is responsible to set the strategy before calling
If None
, the u
ser is responsible to set the strategy before calling
build_executor(...).
build_executor(...).
strategy_config: necessary config for constructing the proper Strategy.
strategy_config: necessary config for constructing the proper Strategy.
Check strategy_flags_dict() for examples of the structure.
Check strategy_flags_dict() for examples of the structure.
...
...
official/vision/detection/modeling/losses.py
View file @
c8a12135
...
@@ -449,7 +449,7 @@ class RetinanetBoxLoss(object):
...
@@ -449,7 +449,7 @@ class RetinanetBoxLoss(object):
num_positives: number of positive examples in the minibatch.
num_positives: number of positive examples in the minibatch.
Returns:
Returns:
an integ
a
r tensor representing total box regression loss.
an integ
e
r tensor representing total box regression loss.
"""
"""
# Sums all positives in a batch for normalization and avoids zero
# Sums all positives in a batch for normalization and avoids zero
# num_positives_sum, which would lead to inf loss during training
# num_positives_sum, which would lead to inf loss during training
...
@@ -457,7 +457,6 @@ class RetinanetBoxLoss(object):
...
@@ -457,7 +457,6 @@ class RetinanetBoxLoss(object):
box_losses
=
[]
box_losses
=
[]
for
level
in
box_outputs
.
keys
():
for
level
in
box_outputs
.
keys
():
# Onehot encoding for classification labels.
box_targets_l
=
labels
[
level
]
box_targets_l
=
labels
[
level
]
box_losses
.
append
(
box_losses
.
append
(
self
.
box_loss
(
box_outputs
[
level
],
box_targets_l
,
num_positives_sum
))
self
.
box_loss
(
box_outputs
[
level
],
box_targets_l
,
num_positives_sum
))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment