Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
c60499b1
Commit
c60499b1
authored
Oct 13, 2022
by
A. Unique TensorFlower
Browse files
Implement the Vision TransformerScaffold which is a subclass from the NLP TransformerScaffold.
PiperOrigin-RevId: 480969429
parent
ad480628
Changes
2
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
679 additions
and
0 deletions
+679
-0
official/projects/vit/modeling/transformer_scaffold.py
official/projects/vit/modeling/transformer_scaffold.py
+161
-0
official/projects/vit/modeling/transformer_scaffold_test.py
official/projects/vit/modeling/transformer_scaffold_test.py
+518
-0
No files found.
official/projects/vit/modeling/transformer_scaffold.py
0 → 100644
View file @
c60499b1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Keras-based Scaffold TransformerEncoder block for vision models.
This implementation is subclassed from NLP TransformerScaffold to support
customized `attention_layer` and `feedforward_layer`. In addition, this
implementation has a few features to better support vision use cases:
1. `stochastic_depth_drop_rate` to supress model overfitting.
2. `return_attention_scores`, optionally returns the attention output.
3. `ffn_has_residual_connection`, clearly define whether feedforward network has
residual connection or not to avoid ambiguity.
"""
from
typing
import
List
,
Optional
,
Tuple
,
Union
import
gin
import
tensorflow
as
tf
from
official.nlp
import
modeling
from
official.vision.modeling.layers.nn_layers
import
StochasticDepth
@
tf
.
keras
.
utils
.
register_keras_serializable
(
package
=
"Vision"
)
@
gin
.
configurable
class
TransformerScaffold
(
modeling
.
layers
.
TransformerScaffold
):
"""TransformerScaffold layer for vision applications.
This layer is a subclass of NLP TransformerScaffold:
Attributes:
stochastic_depth_drop_rate: Drop rate for the residual connections.
return_attention_scores: Optionally return the attention output.
ffn_has_residual_connection: Whether the feedforward network has internal
residual connection and layer norm. If False, the residual connection and
the layer norm op are called inside TransformerScaffold.
"""
def
__init__
(
self
,
*
args
,
stochastic_depth_drop_rate
:
float
=
0.0
,
return_attention_scores
:
bool
=
False
,
ffn_has_residual_connection
:
bool
=
False
,
**
kwargs
):
"""Initializes TransformerEncoderBlock."""
super
().
__init__
(
*
args
,
**
kwargs
)
self
.
_stochastic_depth_drop_rate
=
stochastic_depth_drop_rate
self
.
_return_attention_scores
=
return_attention_scores
self
.
_ffn_has_residual_connection
=
ffn_has_residual_connection
def
build
(
self
,
input_shape
:
Union
[
tf
.
TensorShape
,
List
[
int
]]):
if
self
.
_stochastic_depth_drop_rate
:
self
.
_stochastic_depth
=
StochasticDepth
(
self
.
_stochastic_depth_drop_rate
)
else
:
self
.
_stochastic_depth
=
lambda
x
,
*
args
,
**
kwargs
:
tf
.
identity
(
x
)
super
().
build
(
input_shape
)
def
get_config
(
self
):
config
=
{
"stochastic_depth_drop_rate"
:
self
.
_stochastic_depth_drop_rate
,
"return_attention_scores"
:
self
.
_return_attention_scores
,
"ffn_has_residual_connection"
:
self
.
_ffn_has_residual_connection
}
base_config
=
super
().
get_config
()
base_config
.
update
(
config
)
return
base_config
def
call
(
self
,
inputs
:
tf
.
Tensor
,
training
:
Optional
[
bool
]
=
None
)
->
Union
[
tf
.
Tensor
,
Tuple
[
tf
.
Tensor
,
tf
.
Tensor
]]:
"""Transformer self-attention encoder block call."""
if
isinstance
(
inputs
,
(
list
,
tuple
)):
if
len
(
inputs
)
==
2
:
input_tensor
,
attention_mask
=
inputs
key_value
=
None
elif
len
(
inputs
)
==
3
:
input_tensor
,
key_value
,
attention_mask
=
inputs
else
:
raise
ValueError
(
"Unexpected inputs to %s with length at %d"
%
(
self
.
__class__
,
len
(
inputs
)))
else
:
input_tensor
,
key_value
,
attention_mask
=
(
inputs
,
None
,
None
)
if
key_value
is
None
:
key_value
=
input_tensor
if
self
.
_norm_first
:
source_tensor
=
input_tensor
input_tensor
=
self
.
_attention_layer_norm
(
input_tensor
,
training
=
training
)
attention_layer_output
=
self
.
_attention_layer
(
query
=
input_tensor
,
value
=
key_value
,
attention_mask
=
attention_mask
,
training
=
training
,
return_attention_scores
=
self
.
_return_attention_scores
)
if
isinstance
(
attention_layer_output
,
tuple
):
# `attention_layer_output` contains two tensors when
# `return_attention_scores` is True.
attention_output
,
attention_scores
=
attention_layer_output
else
:
attention_output
=
attention_layer_output
attention_output
=
self
.
_attention_dropout
(
attention_output
,
training
=
training
)
if
self
.
_norm_first
:
source_attention_output
=
source_tensor
+
self
.
_stochastic_depth
(
attention_output
,
training
=
training
)
attention_output
=
self
.
_output_layer_norm
(
source_attention_output
,
training
=
training
)
else
:
attention_output
=
self
.
_attention_layer_norm
(
input_tensor
+
self
.
_stochastic_depth
(
attention_output
,
training
=
training
),
training
=
training
)
if
self
.
_feedforward_block
is
None
:
intermediate_output
=
self
.
_intermediate_dense
(
attention_output
)
intermediate_output
=
self
.
_intermediate_activation_layer
(
intermediate_output
)
layer_output
=
self
.
_output_dense
(
intermediate_output
,
training
=
training
)
layer_output
=
self
.
_output_dropout
(
layer_output
,
training
=
training
)
else
:
layer_output
=
self
.
_feedforward_block
(
attention_output
,
training
=
training
)
# During mixed precision training, layer norm output is always fp32 for now.
# Casts fp32 for the subsequent add.
layer_output
=
tf
.
cast
(
layer_output
,
tf
.
float32
)
if
self
.
_norm_first
:
if
self
.
_ffn_has_residual_connection
:
raise
ValueError
(
"In the case of `norm_first`, the residual connection should be"
"done in the TransformerScaffold call function, not FFN's"
"call function."
)
output
=
source_attention_output
+
self
.
_stochastic_depth
(
layer_output
,
training
=
training
)
else
:
if
self
.
_ffn_has_residual_connection
:
output
=
self
.
_stochastic_depth
(
layer_output
,
training
=
training
)
else
:
output
=
self
.
_output_layer_norm
(
attention_output
+
self
.
_stochastic_depth
(
layer_output
,
training
=
training
))
if
self
.
_return_attention_scores
:
return
output
,
attention_scores
else
:
return
output
official/projects/vit/modeling/transformer_scaffold_test.py
0 → 100644
View file @
c60499b1
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment