Commit c541d653 authored by Alan Yee's avatar Alan Yee Committed by GitHub
Browse files

Update AdditiveGaussianNoiseAutoencoderRunner.py

-Fixed print styling
-Fixed code according to PEP 8
parent d9b01e52
import numpy as np from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import sklearn.preprocessing as prep import sklearn.preprocessing as prep
import tensorflow as tf import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data from tensorflow.examples.tutorials.mnist import input_data
...@@ -8,16 +11,19 @@ from autoencoder_models.DenoisingAutoencoder import AdditiveGaussianNoiseAutoenc ...@@ -8,16 +11,19 @@ from autoencoder_models.DenoisingAutoencoder import AdditiveGaussianNoiseAutoenc
mnist = input_data.read_data_sets('MNIST_data', one_hot = True) mnist = input_data.read_data_sets('MNIST_data', one_hot = True)
def standard_scale(X_train, X_test): def standard_scale(X_train, X_test):
preprocessor = prep.StandardScaler().fit(X_train) preprocessor = prep.StandardScaler().fit(X_train)
X_train = preprocessor.transform(X_train) X_train = preprocessor.transform(X_train)
X_test = preprocessor.transform(X_test) X_test = preprocessor.transform(X_test)
return X_train, X_test return X_train, X_test
def get_random_block_from_data(data, batch_size): def get_random_block_from_data(data, batch_size):
start_index = np.random.randint(0, len(data) - batch_size) start_index = np.random.randint(0, len(data) - batch_size)
return data[start_index:(start_index + batch_size)] return data[start_index:(start_index + batch_size)]
X_train, X_test = standard_scale(mnist.train.images, mnist.test.images) X_train, X_test = standard_scale(mnist.train.images, mnist.test.images)
n_samples = int(mnist.train.num_examples) n_samples = int(mnist.train.num_examples)
...@@ -25,11 +31,12 @@ training_epochs = 20 ...@@ -25,11 +31,12 @@ training_epochs = 20
batch_size = 128 batch_size = 128
display_step = 1 display_step = 1
autoencoder = AdditiveGaussianNoiseAutoencoder(n_input = 784, autoencoder = AdditiveGaussianNoiseAutoencoder(
n_hidden = 200, n_input = 784,
transfer_function = tf.nn.softplus, n_hidden = 200,
optimizer = tf.train.AdamOptimizer(learning_rate = 0.001), transfer_function = tf.nn.softplus,
scale = 0.01) optimizer = tf.train.AdamOptimizer(learning_rate = 0.001),
scale = 0.01)
for epoch in range(training_epochs): for epoch in range(training_epochs):
avg_cost = 0. avg_cost = 0.
...@@ -45,6 +52,7 @@ for epoch in range(training_epochs): ...@@ -45,6 +52,7 @@ for epoch in range(training_epochs):
# Display logs per epoch step # Display logs per epoch step
if epoch % display_step == 0: if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(avg_cost)) print("Epoch: ", '%d,' % (epoch + 1),
"Cost: ", "{:.9f}".format(avg_cost))
print("Total cost: " + str(autoencoder.calc_total_cost(X_test))) print("Total cost: " + str(autoencoder.calc_total_cost(X_test)))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment