Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
c07b073e
Commit
c07b073e
authored
Aug 03, 2020
by
A. Unique TensorFlower
Committed by
TF Object Detection Team
Aug 03, 2020
Browse files
adding config files for models with keypoints
PiperOrigin-RevId: 324584977
parent
39ee0ac9
Changes
7
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
1554 additions
and
0 deletions
+1554
-0
research/object_detection/configs/tf2/centernet_hourglass104_1024x1024_coco17_tpu-32.config
...tf2/centernet_hourglass104_1024x1024_coco17_tpu-32.config
+0
-0
research/object_detection/configs/tf2/centernet_hourglass104_1024x1024_kpts_coco17_tpu-32.config
...enternet_hourglass104_1024x1024_kpts_coco17_tpu-32.config
+374
-0
research/object_detection/configs/tf2/centernet_hourglass104_512x512_coco17_tpu-8.config
...gs/tf2/centernet_hourglass104_512x512_coco17_tpu-8.config
+0
-0
research/object_detection/configs/tf2/centernet_hourglass104_512x512_kpts_coco17_tpu-32.config
.../centernet_hourglass104_512x512_kpts_coco17_tpu-32.config
+395
-0
research/object_detection/configs/tf2/centernet_resnet101_v1_fpn_512x512_coco17_tpu-8.config
...f2/centernet_resnet101_v1_fpn_512x512_coco17_tpu-8.config
+0
-0
research/object_detection/configs/tf2/centernet_resnet50_v1_fpn_512x512_kpts_coco17_tpu-8.config
...enternet_resnet50_v1_fpn_512x512_kpts_coco17_tpu-8.config
+392
-0
research/object_detection/configs/tf2/centernet_resnet50_v2_512x512_kpts_coco17_tpu-8.config
...f2/centernet_resnet50_v2_512x512_kpts_coco17_tpu-8.config
+393
-0
No files found.
research/object_detection/configs/tf2/center
_
net_hourglass104_1024x1024_coco17_tpu-32.config
→
research/object_detection/configs/tf2/centernet_hourglass104_1024x1024_coco17_tpu-32.config
View file @
c07b073e
File moved
research/object_detection/configs/tf2/centernet_hourglass104_1024x1024_kpts_coco17_tpu-32.config
0 → 100644
View file @
c07b073e
# CenterNet meta-architecture from the "Objects as Points" [2] paper with the
# hourglass[1] backbone. This config achieves an mAP of 42.8/64.5 +/- 0.16 on
# COCO 17 (averaged over 5 runs). This config is TPU compatible.
# [1]: https://arxiv.org/abs/1603.06937
# [2]: https://arxiv.org/abs/1904.07850
model
{
center_net
{
num_classes
:
90
feature_extractor
{
type
:
"hourglass_104"
channel_means
:
104
.
01361846923828
channel_means
:
114
.
03422546386719
channel_means
:
119
.
91659545898438
channel_stds
:
73
.
60276794433594
channel_stds
:
69
.
89082336425781
channel_stds
:
70
.
91507720947266
bgr_ordering
:
true
}
image_resizer
{
keep_aspect_ratio_resizer
{
min_dimension
:
1024
max_dimension
:
1024
pad_to_max_dimension
:
true
}
}
object_detection_task
{
task_loss_weight
:
1
.
0
offset_loss_weight
:
1
.
0
scale_loss_weight
:
0
.
10000000149011612
localization_loss
{
l1_localization_loss
{
}
}
}
object_center_params
{
object_center_loss_weight
:
1
.
0
classification_loss
{
penalty_reduced_logistic_focal_loss
{
alpha
:
2
.
0
beta
:
4
.
0
}
}
min_box_overlap_iou
:
0
.
699999988079071
max_box_predictions
:
100
}
keypoint_label_map_path
:
"PATH_TO_BE_CONFIGURED"
keypoint_estimation_task
{
task_name
:
"human_pose"
task_loss_weight
:
1
.
0
loss
{
localization_loss
{
l1_localization_loss
{
}
}
classification_loss
{
penalty_reduced_logistic_focal_loss
{
alpha
:
2
.
0
beta
:
4
.
0
}
}
}
keypoint_class_name
:
"/m/01g317"
keypoint_label_to_std
{
key
:
"left_ankle"
value
:
0
.
8899999856948853
}
keypoint_label_to_std
{
key
:
"left_ear"
value
:
0
.
3499999940395355
}
keypoint_label_to_std
{
key
:
"left_elbow"
value
:
0
.
7200000286102295
}
keypoint_label_to_std
{
key
:
"left_eye"
value
:
0
.
25
}
keypoint_label_to_std
{
key
:
"left_hip"
value
:
1
.
0700000524520874
}
keypoint_label_to_std
{
key
:
"left_knee"
value
:
0
.
8899999856948853
}
keypoint_label_to_std
{
key
:
"left_shoulder"
value
:
0
.
7900000214576721
}
keypoint_label_to_std
{
key
:
"left_wrist"
value
:
0
.
6200000047683716
}
keypoint_label_to_std
{
key
:
"nose"
value
:
0
.
25999999046325684
}
keypoint_label_to_std
{
key
:
"right_ankle"
value
:
0
.
8899999856948853
}
keypoint_label_to_std
{
key
:
"right_ear"
value
:
0
.
3499999940395355
}
keypoint_label_to_std
{
key
:
"right_elbow"
value
:
0
.
7200000286102295
}
keypoint_label_to_std
{
key
:
"right_eye"
value
:
0
.
25
}
keypoint_label_to_std
{
key
:
"right_hip"
value
:
1
.
0700000524520874
}
keypoint_label_to_std
{
key
:
"right_knee"
value
:
0
.
8899999856948853
}
keypoint_label_to_std
{
key
:
"right_shoulder"
value
:
0
.
7900000214576721
}
keypoint_label_to_std
{
key
:
"right_wrist"
value
:
0
.
6200000047683716
}
keypoint_regression_loss_weight
:
0
.
10000000149011612
keypoint_heatmap_loss_weight
:
1
.
0
keypoint_offset_loss_weight
:
1
.
0
offset_peak_radius
:
3
per_keypoint_offset
:
true
}
}
}
train_config
{
batch_size
:
128
data_augmentation_options
{
random_horizontal_flip
{
keypoint_flip_permutation
:
0
keypoint_flip_permutation
:
2
keypoint_flip_permutation
:
1
keypoint_flip_permutation
:
4
keypoint_flip_permutation
:
3
keypoint_flip_permutation
:
6
keypoint_flip_permutation
:
5
keypoint_flip_permutation
:
8
keypoint_flip_permutation
:
7
keypoint_flip_permutation
:
10
keypoint_flip_permutation
:
9
keypoint_flip_permutation
:
12
keypoint_flip_permutation
:
11
keypoint_flip_permutation
:
14
keypoint_flip_permutation
:
13
keypoint_flip_permutation
:
16
keypoint_flip_permutation
:
15
}
}
data_augmentation_options
{
random_adjust_hue
{
}
}
data_augmentation_options
{
random_adjust_contrast
{
}
}
data_augmentation_options
{
random_adjust_saturation
{
}
}
data_augmentation_options
{
random_adjust_brightness
{
}
}
data_augmentation_options
{
random_square_crop_by_scale
{
scale_min
:
0
.
6000000238418579
scale_max
:
1
.
2999999523162842
}
}
optimizer
{
adam_optimizer
{
learning_rate
{
cosine_decay_learning_rate
{
learning_rate_base
:
0
.
0010000000474974513
total_steps
:
250000
warmup_learning_rate
:
0
.
0002500000118743628
warmup_steps
:
5000
}
}
epsilon
:
1
.
0000000116860974
e
-
07
}
use_moving_average
:
false
}
fine_tune_checkpoint
:
"PATH_TO_BE_CONFIGURED"
num_steps
:
250000
max_number_of_boxes
:
100
unpad_groundtruth_tensors
:
false
fine_tune_checkpoint_type
:
"detection"
fine_tune_checkpoint_version
:
V2
}
train_input_reader
: {
label_map_path
:
"PATH_TO_BE_CONFIGURED/label_map.txt"
tf_record_input_reader
{
input_path
:
"PATH_TO_BE_CONFIGURED/train2017-?????-of-00256.tfrecord"
}
num_keypoints
:
17
}
eval_config
{
num_visualizations
:
10
metrics_set
:
"coco_detection_metrics"
use_moving_averages
:
false
min_score_threshold
:
0
.
20000000298023224
max_num_boxes_to_visualize
:
20
batch_size
:
1
parameterized_metric
{
coco_keypoint_metrics
{
class_label
:
"person"
keypoint_label_to_sigmas
{
key
:
"left_ankle"
value
:
0
.
08900000154972076
}
keypoint_label_to_sigmas
{
key
:
"left_ear"
value
:
0
.
03500000014901161
}
keypoint_label_to_sigmas
{
key
:
"left_elbow"
value
:
0
.
07199999690055847
}
keypoint_label_to_sigmas
{
key
:
"left_eye"
value
:
0
.
02500000037252903
}
keypoint_label_to_sigmas
{
key
:
"left_hip"
value
:
0
.
10700000077486038
}
keypoint_label_to_sigmas
{
key
:
"left_knee"
value
:
0
.
08699999749660492
}
keypoint_label_to_sigmas
{
key
:
"left_shoulder"
value
:
0
.
07900000363588333
}
keypoint_label_to_sigmas
{
key
:
"left_wrist"
value
:
0
.
06199999898672104
}
keypoint_label_to_sigmas
{
key
:
"nose"
value
:
0
.
026000000536441803
}
keypoint_label_to_sigmas
{
key
:
"right_ankle"
value
:
0
.
08900000154972076
}
keypoint_label_to_sigmas
{
key
:
"right_ear"
value
:
0
.
03500000014901161
}
keypoint_label_to_sigmas
{
key
:
"right_elbow"
value
:
0
.
07199999690055847
}
keypoint_label_to_sigmas
{
key
:
"right_eye"
value
:
0
.
02500000037252903
}
keypoint_label_to_sigmas
{
key
:
"right_hip"
value
:
0
.
10700000077486038
}
keypoint_label_to_sigmas
{
key
:
"right_knee"
value
:
0
.
08699999749660492
}
keypoint_label_to_sigmas
{
key
:
"right_shoulder"
value
:
0
.
07900000363588333
}
keypoint_label_to_sigmas
{
key
:
"right_wrist"
value
:
0
.
06199999898672104
}
}
}
keypoint_edge
{
start
:
0
end
:
1
}
keypoint_edge
{
start
:
0
end
:
2
}
keypoint_edge
{
start
:
1
end
:
3
}
keypoint_edge
{
start
:
2
end
:
4
}
keypoint_edge
{
start
:
0
end
:
5
}
keypoint_edge
{
start
:
0
end
:
6
}
keypoint_edge
{
start
:
5
end
:
7
}
keypoint_edge
{
start
:
7
end
:
9
}
keypoint_edge
{
start
:
6
end
:
8
}
keypoint_edge
{
start
:
8
end
:
10
}
keypoint_edge
{
start
:
5
end
:
6
}
keypoint_edge
{
start
:
5
end
:
11
}
keypoint_edge
{
start
:
6
end
:
12
}
keypoint_edge
{
start
:
11
end
:
12
}
keypoint_edge
{
start
:
11
end
:
13
}
keypoint_edge
{
start
:
13
end
:
15
}
keypoint_edge
{
start
:
12
end
:
14
}
keypoint_edge
{
start
:
14
end
:
16
}
}
eval_input_reader
: {
label_map_path
:
"PATH_TO_BE_CONFIGURED/label_map.txt"
shuffle
:
false
num_epochs
:
1
tf_record_input_reader
{
input_path
:
"PATH_TO_BE_CONFIGURED/val2017-?????-of-00032.tfrecord"
}
num_keypoints
:
17
}
research/object_detection/configs/tf2/center
_
net_hourglass104_512x512_coco17_tpu-8.config
→
research/object_detection/configs/tf2/centernet_hourglass104_512x512_coco17_tpu-8.config
View file @
c07b073e
File moved
research/object_detection/configs/tf2/centernet_hourglass104_512x512_kpts_coco17_tpu-32.config
0 → 100644
View file @
c07b073e
# CenterNet meta-architecture from the "Objects as Points" [2] paper with the
# hourglass[1] backbone. This config achieves an mAP of 40.0/61.4 +/- 0.16 on
# COCO 17 (averaged over 5 runs). This config is TPU compatible.
# [1]: https://arxiv.org/abs/1603.06937
# [2]: https://arxiv.org/abs/1904.07850
model
{
center_net
{
num_classes
:
90
feature_extractor
{
type
:
"hourglass_104"
bgr_ordering
:
true
channel_means
: [
104
.
01362025
,
114
.
03422265
,
119
.
9165958
]
channel_stds
: [
73
.
6027665
,
69
.
89082075
,
70
.
9150767
]
}
image_resizer
{
keep_aspect_ratio_resizer
{
min_dimension
:
512
max_dimension
:
512
pad_to_max_dimension
:
true
}
}
object_detection_task
{
task_loss_weight
:
1
.
0
offset_loss_weight
:
1
.
0
scale_loss_weight
:
0
.
1
localization_loss
{
l1_localization_loss
{
}
}
}
object_center_params
{
object_center_loss_weight
:
1
.
0
min_box_overlap_iou
:
0
.
7
max_box_predictions
:
100
classification_loss
{
penalty_reduced_logistic_focal_loss
{
alpha
:
2
.
0
beta
:
4
.
0
}
}
}
keypoint_label_map_path
:
"PATH_TO_BE_CONFIGURED"
keypoint_estimation_task
{
task_name
:
"human_pose"
task_loss_weight
:
1
.
0
loss
{
localization_loss
{
l1_localization_loss
{
}
}
classification_loss
{
penalty_reduced_logistic_focal_loss
{
alpha
:
2
.
0
beta
:
4
.
0
}
}
}
keypoint_class_name
:
"/m/01g317"
keypoint_label_to_std
{
key
:
"left_ankle"
value
:
0
.
89
}
keypoint_label_to_std
{
key
:
"left_ear"
value
:
0
.
35
}
keypoint_label_to_std
{
key
:
"left_elbow"
value
:
0
.
72
}
keypoint_label_to_std
{
key
:
"left_eye"
value
:
0
.
25
}
keypoint_label_to_std
{
key
:
"left_hip"
value
:
1
.
07
}
keypoint_label_to_std
{
key
:
"left_knee"
value
:
0
.
89
}
keypoint_label_to_std
{
key
:
"left_shoulder"
value
:
0
.
79
}
keypoint_label_to_std
{
key
:
"left_wrist"
value
:
0
.
62
}
keypoint_label_to_std
{
key
:
"nose"
value
:
0
.
26
}
keypoint_label_to_std
{
key
:
"right_ankle"
value
:
0
.
89
}
keypoint_label_to_std
{
key
:
"right_ear"
value
:
0
.
35
}
keypoint_label_to_std
{
key
:
"right_elbow"
value
:
0
.
72
}
keypoint_label_to_std
{
key
:
"right_eye"
value
:
0
.
25
}
keypoint_label_to_std
{
key
:
"right_hip"
value
:
1
.
07
}
keypoint_label_to_std
{
key
:
"right_knee"
value
:
0
.
89
}
keypoint_label_to_std
{
key
:
"right_shoulder"
value
:
0
.
79
}
keypoint_label_to_std
{
key
:
"right_wrist"
value
:
0
.
62
}
keypoint_regression_loss_weight
:
0
.
1
keypoint_heatmap_loss_weight
:
1
.
0
keypoint_offset_loss_weight
:
1
.
0
offset_peak_radius
:
3
per_keypoint_offset
:
true
}
}
}
train_config
: {
batch_size
:
128
num_steps
:
250000
data_augmentation_options
{
random_horizontal_flip
{
keypoint_flip_permutation
:
0
keypoint_flip_permutation
:
2
keypoint_flip_permutation
:
1
keypoint_flip_permutation
:
4
keypoint_flip_permutation
:
3
keypoint_flip_permutation
:
6
keypoint_flip_permutation
:
5
keypoint_flip_permutation
:
8
keypoint_flip_permutation
:
7
keypoint_flip_permutation
:
10
keypoint_flip_permutation
:
9
keypoint_flip_permutation
:
12
keypoint_flip_permutation
:
11
keypoint_flip_permutation
:
14
keypoint_flip_permutation
:
13
keypoint_flip_permutation
:
16
keypoint_flip_permutation
:
15
}
}
data_augmentation_options
{
random_crop_image
{
min_aspect_ratio
:
0
.
5
max_aspect_ratio
:
1
.
7
random_coef
:
0
.
25
}
}
data_augmentation_options
{
random_adjust_hue
{
}
}
data_augmentation_options
{
random_adjust_contrast
{
}
}
data_augmentation_options
{
random_adjust_saturation
{
}
}
data_augmentation_options
{
random_adjust_brightness
{
}
}
data_augmentation_options
{
random_absolute_pad_image
{
max_height_padding
:
200
max_width_padding
:
200
pad_color
: [
0
,
0
,
0
]
}
}
optimizer
{
adam_optimizer
: {
epsilon
:
1
e
-
7
# Match tf.keras.optimizers.Adam's default.
learning_rate
: {
cosine_decay_learning_rate
{
learning_rate_base
:
1
e
-
3
total_steps
:
250000
warmup_learning_rate
:
2
.
5
e
-
4
warmup_steps
:
5000
}
}
}
use_moving_average
:
false
}
max_number_of_boxes
:
100
unpad_groundtruth_tensors
:
false
fine_tune_checkpoint_version
:
V2
fine_tune_checkpoint
:
"PATH_TO_BE_CONFIGURED"
fine_tune_checkpoint_type
:
"detection"
}
train_input_reader
: {
label_map_path
:
"PATH_TO_BE_CONFIGURED/label_map.txt"
tf_record_input_reader
{
input_path
:
"PATH_TO_BE_CONFIGURED/train2017-?????-of-00256.tfrecord"
}
num_keypoints
:
17
}
eval_config
: {
metrics_set
:
"coco_detection_metrics"
use_moving_averages
:
false
num_visualizations
:
10
max_num_boxes_to_visualize
:
20
min_score_threshold
:
0
.
2
batch_size
:
1
;
parameterized_metric
{
coco_keypoint_metrics
{
class_label
:
"person"
keypoint_label_to_sigmas
{
key
:
"nose"
value
:
0
.
026
}
keypoint_label_to_sigmas
{
key
:
"left_eye"
value
:
0
.
025
}
keypoint_label_to_sigmas
{
key
:
"right_eye"
value
:
0
.
025
}
keypoint_label_to_sigmas
{
key
:
"left_ear"
value
:
0
.
035
}
keypoint_label_to_sigmas
{
key
:
"right_ear"
value
:
0
.
035
}
keypoint_label_to_sigmas
{
key
:
"left_shoulder"
value
:
0
.
079
}
keypoint_label_to_sigmas
{
key
:
"right_shoulder"
value
:
0
.
079
}
keypoint_label_to_sigmas
{
key
:
"left_elbow"
value
:
0
.
072
}
keypoint_label_to_sigmas
{
key
:
"right_elbow"
value
:
0
.
072
}
keypoint_label_to_sigmas
{
key
:
"left_wrist"
value
:
0
.
062
}
keypoint_label_to_sigmas
{
key
:
"right_wrist"
value
:
0
.
062
}
keypoint_label_to_sigmas
{
key
:
"left_hip"
value
:
0
.
107
}
keypoint_label_to_sigmas
{
key
:
"right_hip"
value
:
0
.
107
}
keypoint_label_to_sigmas
{
key
:
"left_knee"
value
:
0
.
087
}
keypoint_label_to_sigmas
{
key
:
"right_knee"
value
:
0
.
087
}
keypoint_label_to_sigmas
{
key
:
"left_ankle"
value
:
0
.
089
}
keypoint_label_to_sigmas
{
key
:
"right_ankle"
value
:
0
.
089
}
}
}
# Provide the edges to connect the keypoints. The setting is suitable for
# COCO's 17 human pose keypoints.
keypoint_edge
{
# nose-left eye
start
:
0
end
:
1
}
keypoint_edge
{
# nose-right eye
start
:
0
end
:
2
}
keypoint_edge
{
# left eye-left ear
start
:
1
end
:
3
}
keypoint_edge
{
# right eye-right ear
start
:
2
end
:
4
}
keypoint_edge
{
# nose-left shoulder
start
:
0
end
:
5
}
keypoint_edge
{
# nose-right shoulder
start
:
0
end
:
6
}
keypoint_edge
{
# left shoulder-left elbow
start
:
5
end
:
7
}
keypoint_edge
{
# left elbow-left wrist
start
:
7
end
:
9
}
keypoint_edge
{
# right shoulder-right elbow
start
:
6
end
:
8
}
keypoint_edge
{
# right elbow-right wrist
start
:
8
end
:
10
}
keypoint_edge
{
# left shoulder-right shoulder
start
:
5
end
:
6
}
keypoint_edge
{
# left shoulder-left hip
start
:
5
end
:
11
}
keypoint_edge
{
# right shoulder-right hip
start
:
6
end
:
12
}
keypoint_edge
{
# left hip-right hip
start
:
11
end
:
12
}
keypoint_edge
{
# left hip-left knee
start
:
11
end
:
13
}
keypoint_edge
{
# left knee-left ankle
start
:
13
end
:
15
}
keypoint_edge
{
# right hip-right knee
start
:
12
end
:
14
}
keypoint_edge
{
# right knee-right ankle
start
:
14
end
:
16
}
}
eval_input_reader
: {
label_map_path
:
"PATH_TO_BE_CONFIGURED/label_map.txt"
tf_record_input_reader
{
input_path
:
"PATH_TO_BE_CONFIGURED/train2017-?????-of-00256.tfrecord"
}
num_keypoints
:
17
}
research/object_detection/configs/tf2/center
_
net_resnet101_v1_fpn_512x512_coco17_tpu-8.config
→
research/object_detection/configs/tf2/centernet_resnet101_v1_fpn_512x512_coco17_tpu-8.config
View file @
c07b073e
File moved
research/object_detection/configs/tf2/centernet_resnet50_v1_fpn_512x512_kpts_coco17_tpu-8.config
0 → 100644
View file @
c07b073e
# CenterNet meta-architecture from the "Objects as Points" [1] paper
# with the ResNet-v1-50 backbone. The ResNet backbone has a few differences
# as compared to the one mentioned in the paper, hence the performance is
# slightly worse. This config is TPU comptatible.
# [1]: https://arxiv.org/abs/1904.07850
#
model
{
center_net
{
num_classes
:
90
feature_extractor
{
type
:
"resnet_v1_50_fpn"
}
image_resizer
{
keep_aspect_ratio_resizer
{
min_dimension
:
512
max_dimension
:
512
pad_to_max_dimension
:
true
}
}
object_detection_task
{
task_loss_weight
:
1
.
0
offset_loss_weight
:
1
.
0
scale_loss_weight
:
0
.
1
localization_loss
{
l1_localization_loss
{
}
}
}
object_center_params
{
object_center_loss_weight
:
1
.
0
min_box_overlap_iou
:
0
.
7
max_box_predictions
:
100
classification_loss
{
penalty_reduced_logistic_focal_loss
{
alpha
:
2
.
0
beta
:
4
.
0
}
}
}
keypoint_label_map_path
:
"PATH_TO_BE_CONFIGURED"
keypoint_estimation_task
{
task_name
:
"human_pose"
task_loss_weight
:
1
.
0
loss
{
localization_loss
{
l1_localization_loss
{
}
}
classification_loss
{
penalty_reduced_logistic_focal_loss
{
alpha
:
2
.
0
beta
:
4
.
0
}
}
}
keypoint_class_name
:
"/m/01g317"
keypoint_label_to_std
{
key
:
"left_ankle"
value
:
0
.
89
}
keypoint_label_to_std
{
key
:
"left_ear"
value
:
0
.
35
}
keypoint_label_to_std
{
key
:
"left_elbow"
value
:
0
.
72
}
keypoint_label_to_std
{
key
:
"left_eye"
value
:
0
.
25
}
keypoint_label_to_std
{
key
:
"left_hip"
value
:
1
.
07
}
keypoint_label_to_std
{
key
:
"left_knee"
value
:
0
.
89
}
keypoint_label_to_std
{
key
:
"left_shoulder"
value
:
0
.
79
}
keypoint_label_to_std
{
key
:
"left_wrist"
value
:
0
.
62
}
keypoint_label_to_std
{
key
:
"nose"
value
:
0
.
26
}
keypoint_label_to_std
{
key
:
"right_ankle"
value
:
0
.
89
}
keypoint_label_to_std
{
key
:
"right_ear"
value
:
0
.
35
}
keypoint_label_to_std
{
key
:
"right_elbow"
value
:
0
.
72
}
keypoint_label_to_std
{
key
:
"right_eye"
value
:
0
.
25
}
keypoint_label_to_std
{
key
:
"right_hip"
value
:
1
.
07
}
keypoint_label_to_std
{
key
:
"right_knee"
value
:
0
.
89
}
keypoint_label_to_std
{
key
:
"right_shoulder"
value
:
0
.
79
}
keypoint_label_to_std
{
key
:
"right_wrist"
value
:
0
.
62
}
keypoint_regression_loss_weight
:
0
.
1
keypoint_heatmap_loss_weight
:
1
.
0
keypoint_offset_loss_weight
:
1
.
0
offset_peak_radius
:
3
per_keypoint_offset
:
true
}
}
}
train_config
: {
batch_size
:
128
num_steps
:
250000
data_augmentation_options
{
random_horizontal_flip
{
keypoint_flip_permutation
:
0
keypoint_flip_permutation
:
2
keypoint_flip_permutation
:
1
keypoint_flip_permutation
:
4
keypoint_flip_permutation
:
3
keypoint_flip_permutation
:
6
keypoint_flip_permutation
:
5
keypoint_flip_permutation
:
8
keypoint_flip_permutation
:
7
keypoint_flip_permutation
:
10
keypoint_flip_permutation
:
9
keypoint_flip_permutation
:
12
keypoint_flip_permutation
:
11
keypoint_flip_permutation
:
14
keypoint_flip_permutation
:
13
keypoint_flip_permutation
:
16
keypoint_flip_permutation
:
15
}
}
data_augmentation_options
{
random_crop_image
{
min_aspect_ratio
:
0
.
5
max_aspect_ratio
:
1
.
7
random_coef
:
0
.
25
}
}
data_augmentation_options
{
random_adjust_hue
{
}
}
data_augmentation_options
{
random_adjust_contrast
{
}
}
data_augmentation_options
{
random_adjust_saturation
{
}
}
data_augmentation_options
{
random_adjust_brightness
{
}
}
data_augmentation_options
{
random_absolute_pad_image
{
max_height_padding
:
200
max_width_padding
:
200
pad_color
: [
0
,
0
,
0
]
}
}
optimizer
{
adam_optimizer
: {
epsilon
:
1
e
-
7
# Match tf.keras.optimizers.Adam's default.
learning_rate
: {
cosine_decay_learning_rate
{
learning_rate_base
:
1
e
-
3
total_steps
:
250000
warmup_learning_rate
:
2
.
5
e
-
4
warmup_steps
:
5000
}
}
}
use_moving_average
:
false
}
max_number_of_boxes
:
100
unpad_groundtruth_tensors
:
false
fine_tune_checkpoint_version
:
V2
fine_tune_checkpoint
:
"PATH_TO_BE_CONFIGURED"
fine_tune_checkpoint_type
:
"classification"
}
train_input_reader
: {
label_map_path
:
"PATH_TO_BE_CONFIGURED/label_map.txt"
tf_record_input_reader
{
input_path
:
"PATH_TO_BE_CONFIGURED/train2017-?????-of-00256.tfrecord"
}
num_keypoints
:
17
}
eval_config
: {
metrics_set
:
"coco_detection_metrics"
use_moving_averages
:
false
num_visualizations
:
10
max_num_boxes_to_visualize
:
20
min_score_threshold
:
0
.
2
batch_size
:
1
;
parameterized_metric
{
coco_keypoint_metrics
{
class_label
:
"person"
keypoint_label_to_sigmas
{
key
:
"nose"
value
:
0
.
026
}
keypoint_label_to_sigmas
{
key
:
"left_eye"
value
:
0
.
025
}
keypoint_label_to_sigmas
{
key
:
"right_eye"
value
:
0
.
025
}
keypoint_label_to_sigmas
{
key
:
"left_ear"
value
:
0
.
035
}
keypoint_label_to_sigmas
{
key
:
"right_ear"
value
:
0
.
035
}
keypoint_label_to_sigmas
{
key
:
"left_shoulder"
value
:
0
.
079
}
keypoint_label_to_sigmas
{
key
:
"right_shoulder"
value
:
0
.
079
}
keypoint_label_to_sigmas
{
key
:
"left_elbow"
value
:
0
.
072
}
keypoint_label_to_sigmas
{
key
:
"right_elbow"
value
:
0
.
072
}
keypoint_label_to_sigmas
{
key
:
"left_wrist"
value
:
0
.
062
}
keypoint_label_to_sigmas
{
key
:
"right_wrist"
value
:
0
.
062
}
keypoint_label_to_sigmas
{
key
:
"left_hip"
value
:
0
.
107
}
keypoint_label_to_sigmas
{
key
:
"right_hip"
value
:
0
.
107
}
keypoint_label_to_sigmas
{
key
:
"left_knee"
value
:
0
.
087
}
keypoint_label_to_sigmas
{
key
:
"right_knee"
value
:
0
.
087
}
keypoint_label_to_sigmas
{
key
:
"left_ankle"
value
:
0
.
089
}
keypoint_label_to_sigmas
{
key
:
"right_ankle"
value
:
0
.
089
}
}
}
# Provide the edges to connect the keypoints. The setting is suitable for
# COCO's 17 human pose keypoints.
keypoint_edge
{
# nose-left eye
start
:
0
end
:
1
}
keypoint_edge
{
# nose-right eye
start
:
0
end
:
2
}
keypoint_edge
{
# left eye-left ear
start
:
1
end
:
3
}
keypoint_edge
{
# right eye-right ear
start
:
2
end
:
4
}
keypoint_edge
{
# nose-left shoulder
start
:
0
end
:
5
}
keypoint_edge
{
# nose-right shoulder
start
:
0
end
:
6
}
keypoint_edge
{
# left shoulder-left elbow
start
:
5
end
:
7
}
keypoint_edge
{
# left elbow-left wrist
start
:
7
end
:
9
}
keypoint_edge
{
# right shoulder-right elbow
start
:
6
end
:
8
}
keypoint_edge
{
# right elbow-right wrist
start
:
8
end
:
10
}
keypoint_edge
{
# left shoulder-right shoulder
start
:
5
end
:
6
}
keypoint_edge
{
# left shoulder-left hip
start
:
5
end
:
11
}
keypoint_edge
{
# right shoulder-right hip
start
:
6
end
:
12
}
keypoint_edge
{
# left hip-right hip
start
:
11
end
:
12
}
keypoint_edge
{
# left hip-left knee
start
:
11
end
:
13
}
keypoint_edge
{
# left knee-left ankle
start
:
13
end
:
15
}
keypoint_edge
{
# right hip-right knee
start
:
12
end
:
14
}
keypoint_edge
{
# right knee-right ankle
start
:
14
end
:
16
}
}
eval_input_reader
: {
label_map_path
:
"PATH_TO_BE_CONFIGURED/label_map.txt"
shuffle
:
false
num_epochs
:
1
tf_record_input_reader
{
input_path
:
"PATH_TO_BE_CONFIGURED/val2017-?????-of-00032.tfrecord"
}
num_keypoints
:
17
}
research/object_detection/configs/tf2/centernet_resnet50_v2_512x512_kpts_coco17_tpu-8.config
0 → 100644
View file @
c07b073e
# CenterNet meta-architecture from the "Objects as Points" [1] paper
# with the ResNet-v2-50 backbone. The ResNet backbone has a few differences
# as compared to the one mentioned in the paper, hence the performance is
# slightly worse. This config is TPU comptatible.
# [1]: https://arxiv.org/abs/1904.07850
model
{
center_net
{
num_classes
:
90
feature_extractor
{
type
:
"resnet_v2_50"
}
image_resizer
{
keep_aspect_ratio_resizer
{
min_dimension
:
512
max_dimension
:
512
pad_to_max_dimension
:
true
}
}
object_detection_task
{
task_loss_weight
:
1
.
0
offset_loss_weight
:
1
.
0
scale_loss_weight
:
0
.
1
localization_loss
{
l1_localization_loss
{
}
}
}
object_center_params
{
object_center_loss_weight
:
1
.
0
min_box_overlap_iou
:
0
.
7
max_box_predictions
:
100
classification_loss
{
penalty_reduced_logistic_focal_loss
{
alpha
:
2
.
0
beta
:
4
.
0
}
}
}
keypoint_label_map_path
:
"PATH_TO_BE_CONFIGURED"
keypoint_estimation_task
{
task_name
:
"human_pose"
task_loss_weight
:
1
.
0
loss
{
localization_loss
{
l1_localization_loss
{
}
}
classification_loss
{
penalty_reduced_logistic_focal_loss
{
alpha
:
2
.
0
beta
:
4
.
0
}
}
}
keypoint_class_name
:
"/m/01g317"
keypoint_label_to_std
{
key
:
"left_ankle"
value
:
0
.
89
}
keypoint_label_to_std
{
key
:
"left_ear"
value
:
0
.
35
}
keypoint_label_to_std
{
key
:
"left_elbow"
value
:
0
.
72
}
keypoint_label_to_std
{
key
:
"left_eye"
value
:
0
.
25
}
keypoint_label_to_std
{
key
:
"left_hip"
value
:
1
.
07
}
keypoint_label_to_std
{
key
:
"left_knee"
value
:
0
.
89
}
keypoint_label_to_std
{
key
:
"left_shoulder"
value
:
0
.
79
}
keypoint_label_to_std
{
key
:
"left_wrist"
value
:
0
.
62
}
keypoint_label_to_std
{
key
:
"nose"
value
:
0
.
26
}
keypoint_label_to_std
{
key
:
"right_ankle"
value
:
0
.
89
}
keypoint_label_to_std
{
key
:
"right_ear"
value
:
0
.
35
}
keypoint_label_to_std
{
key
:
"right_elbow"
value
:
0
.
72
}
keypoint_label_to_std
{
key
:
"right_eye"
value
:
0
.
25
}
keypoint_label_to_std
{
key
:
"right_hip"
value
:
1
.
07
}
keypoint_label_to_std
{
key
:
"right_knee"
value
:
0
.
89
}
keypoint_label_to_std
{
key
:
"right_shoulder"
value
:
0
.
79
}
keypoint_label_to_std
{
key
:
"right_wrist"
value
:
0
.
62
}
keypoint_regression_loss_weight
:
0
.
1
keypoint_heatmap_loss_weight
:
1
.
0
keypoint_offset_loss_weight
:
1
.
0
offset_peak_radius
:
3
per_keypoint_offset
:
true
}
}
}
train_config
: {
batch_size
:
128
num_steps
:
250000
data_augmentation_options
{
random_horizontal_flip
{
keypoint_flip_permutation
:
0
keypoint_flip_permutation
:
2
keypoint_flip_permutation
:
1
keypoint_flip_permutation
:
4
keypoint_flip_permutation
:
3
keypoint_flip_permutation
:
6
keypoint_flip_permutation
:
5
keypoint_flip_permutation
:
8
keypoint_flip_permutation
:
7
keypoint_flip_permutation
:
10
keypoint_flip_permutation
:
9
keypoint_flip_permutation
:
12
keypoint_flip_permutation
:
11
keypoint_flip_permutation
:
14
keypoint_flip_permutation
:
13
keypoint_flip_permutation
:
16
keypoint_flip_permutation
:
15
}
}
data_augmentation_options
{
random_crop_image
{
min_aspect_ratio
:
0
.
5
max_aspect_ratio
:
1
.
7
random_coef
:
0
.
25
}
}
data_augmentation_options
{
random_adjust_hue
{
}
}
data_augmentation_options
{
random_adjust_contrast
{
}
}
data_augmentation_options
{
random_adjust_saturation
{
}
}
data_augmentation_options
{
random_adjust_brightness
{
}
}
data_augmentation_options
{
random_absolute_pad_image
{
max_height_padding
:
200
max_width_padding
:
200
pad_color
: [
0
,
0
,
0
]
}
}
optimizer
{
adam_optimizer
: {
epsilon
:
1
e
-
7
# Match tf.keras.optimizers.Adam's default.
learning_rate
: {
cosine_decay_learning_rate
{
learning_rate_base
:
1
e
-
3
total_steps
:
250000
warmup_learning_rate
:
2
.
5
e
-
4
warmup_steps
:
5000
}
}
}
use_moving_average
:
false
}
max_number_of_boxes
:
100
unpad_groundtruth_tensors
:
false
fine_tune_checkpoint_version
:
V2
fine_tune_checkpoint
:
"PATH_TO_BE_CONFIGURED"
fine_tune_checkpoint_type
:
"classification"
}
train_input_reader
: {
label_map_path
:
"PATH_TO_BE_CONFIGURED/label_map.txt"
tf_record_input_reader
{
input_path
:
"PATH_TO_BE_CONFIGURED/train2017-?????-of-00256.tfrecord"
}
num_keypoints
:
17
}
eval_config
: {
metrics_set
:
"coco_detection_metrics"
use_moving_averages
:
false
num_visualizations
:
10
max_num_boxes_to_visualize
:
20
min_score_threshold
:
0
.
2
batch_size
:
1
;
parameterized_metric
{
coco_keypoint_metrics
{
class_label
:
"person"
keypoint_label_to_sigmas
{
key
:
"nose"
value
:
0
.
026
}
keypoint_label_to_sigmas
{
key
:
"left_eye"
value
:
0
.
025
}
keypoint_label_to_sigmas
{
key
:
"right_eye"
value
:
0
.
025
}
keypoint_label_to_sigmas
{
key
:
"left_ear"
value
:
0
.
035
}
keypoint_label_to_sigmas
{
key
:
"right_ear"
value
:
0
.
035
}
keypoint_label_to_sigmas
{
key
:
"left_shoulder"
value
:
0
.
079
}
keypoint_label_to_sigmas
{
key
:
"right_shoulder"
value
:
0
.
079
}
keypoint_label_to_sigmas
{
key
:
"left_elbow"
value
:
0
.
072
}
keypoint_label_to_sigmas
{
key
:
"right_elbow"
value
:
0
.
072
}
keypoint_label_to_sigmas
{
key
:
"left_wrist"
value
:
0
.
062
}
keypoint_label_to_sigmas
{
key
:
"right_wrist"
value
:
0
.
062
}
keypoint_label_to_sigmas
{
key
:
"left_hip"
value
:
0
.
107
}
keypoint_label_to_sigmas
{
key
:
"right_hip"
value
:
0
.
107
}
keypoint_label_to_sigmas
{
key
:
"left_knee"
value
:
0
.
087
}
keypoint_label_to_sigmas
{
key
:
"right_knee"
value
:
0
.
087
}
keypoint_label_to_sigmas
{
key
:
"left_ankle"
value
:
0
.
089
}
keypoint_label_to_sigmas
{
key
:
"right_ankle"
value
:
0
.
089
}
}
}
# Provide the edges to connect the keypoints. The setting is suitable for
# COCO's 17 human pose keypoints.
keypoint_edge
{
# nose-left eye
start
:
0
end
:
1
}
keypoint_edge
{
# nose-right eye
start
:
0
end
:
2
}
keypoint_edge
{
# left eye-left ear
start
:
1
end
:
3
}
keypoint_edge
{
# right eye-right ear
start
:
2
end
:
4
}
keypoint_edge
{
# nose-left shoulder
start
:
0
end
:
5
}
keypoint_edge
{
# nose-right shoulder
start
:
0
end
:
6
}
keypoint_edge
{
# left shoulder-left elbow
start
:
5
end
:
7
}
keypoint_edge
{
# left elbow-left wrist
start
:
7
end
:
9
}
keypoint_edge
{
# right shoulder-right elbow
start
:
6
end
:
8
}
keypoint_edge
{
# right elbow-right wrist
start
:
8
end
:
10
}
keypoint_edge
{
# left shoulder-right shoulder
start
:
5
end
:
6
}
keypoint_edge
{
# left shoulder-left hip
start
:
5
end
:
11
}
keypoint_edge
{
# right shoulder-right hip
start
:
6
end
:
12
}
keypoint_edge
{
# left hip-right hip
start
:
11
end
:
12
}
keypoint_edge
{
# left hip-left knee
start
:
11
end
:
13
}
keypoint_edge
{
# left knee-left ankle
start
:
13
end
:
15
}
keypoint_edge
{
# right hip-right knee
start
:
12
end
:
14
}
keypoint_edge
{
# right knee-right ankle
start
:
14
end
:
16
}
}
eval_input_reader
: {
label_map_path
:
"PATH_TO_BE_CONFIGURED/label_map.txt"
shuffle
:
false
num_epochs
:
1
tf_record_input_reader
{
input_path
:
"PATH_TO_BE_CONFIGURED/val2017-?????-of-00032.tfrecord"
}
num_keypoints
:
17
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment