Commit bf5a3910 authored by Chaochao Yan's avatar Chaochao Yan Committed by A. Unique TensorFlower
Browse files

Internal change

PiperOrigin-RevId: 469264237
parent eac1af65
...@@ -15,16 +15,18 @@ ...@@ -15,16 +15,18 @@
"""Custom checkpoint manager that also exports saved models.""" """Custom checkpoint manager that also exports saved models."""
import os import os
from typing import Callable, Mapping, Optional import re
import time
from typing import Callable, List, Mapping, Optional, Union
from absl import logging from absl import logging
import tensorflow as tf import tensorflow as tf
_SAVED_MODULES_PATH_SUFFIX = 'saved_modules' SAVED_MODULES_PATH_SUFFIX = 'saved_modules'
def make_saved_modules_directory_name(checkpoint_name: str) -> str: def make_saved_modules_directory_name(checkpoint_name: str) -> str:
return f'{checkpoint_name}_{_SAVED_MODULES_PATH_SUFFIX}' return f'{checkpoint_name}_{SAVED_MODULES_PATH_SUFFIX}'
class SavedModelCheckpointManager(tf.train.CheckpointManager): class SavedModelCheckpointManager(tf.train.CheckpointManager):
...@@ -51,10 +53,10 @@ class SavedModelCheckpointManager(tf.train.CheckpointManager): ...@@ -51,10 +53,10 @@ class SavedModelCheckpointManager(tf.train.CheckpointManager):
checkpoint_interval=checkpoint_interval, checkpoint_interval=checkpoint_interval,
init_fn=init_fn) init_fn=init_fn)
self._modules_to_export = modules_to_export self._modules_to_export = modules_to_export
self._savedmodels = self._get_existing_savedmodels() self._savedmodels = self.get_existing_savedmodels()
def save(self, def save(self,
checkpoint_number=None, checkpoint_number: Optional[int] = None,
check_interval: bool = True, check_interval: bool = True,
options: Optional[tf.train.CheckpointOptions] = None): options: Optional[tf.train.CheckpointOptions] = None):
"""See base class.""" """See base class."""
...@@ -80,7 +82,7 @@ class SavedModelCheckpointManager(tf.train.CheckpointManager): ...@@ -80,7 +82,7 @@ class SavedModelCheckpointManager(tf.train.CheckpointManager):
saved_modules_directories_to_keep = [ saved_modules_directories_to_keep = [
make_saved_modules_directory_name(ckpt) for ckpt in self.checkpoints make_saved_modules_directory_name(ckpt) for ckpt in self.checkpoints
] ]
existing_saved_modules_dirs = self._get_existing_savedmodels() existing_saved_modules_dirs = self.get_existing_savedmodels()
self._savedmodels = [] self._savedmodels = []
# Keep savedmodels in the same order as checkpoints (from oldest to newest). # Keep savedmodels in the same order as checkpoints (from oldest to newest).
...@@ -94,7 +96,7 @@ class SavedModelCheckpointManager(tf.train.CheckpointManager): ...@@ -94,7 +96,7 @@ class SavedModelCheckpointManager(tf.train.CheckpointManager):
return checkpoint_path return checkpoint_path
def _get_existing_savedmodels(self): def get_existing_savedmodels(self) -> List[str]:
"""Gets a list of all existing SavedModel paths in `directory`. """Gets a list of all existing SavedModel paths in `directory`.
Returns: Returns:
...@@ -105,7 +107,7 @@ class SavedModelCheckpointManager(tf.train.CheckpointManager): ...@@ -105,7 +107,7 @@ class SavedModelCheckpointManager(tf.train.CheckpointManager):
return tf.io.gfile.glob(saved_modules_glob) return tf.io.gfile.glob(saved_modules_glob)
@property @property
def latest_savedmodel(self): def latest_savedmodel(self) -> Union[str, None]:
"""The path of the most recent SavedModel in `directory`. """The path of the most recent SavedModel in `directory`.
Returns: Returns:
...@@ -116,10 +118,127 @@ class SavedModelCheckpointManager(tf.train.CheckpointManager): ...@@ -116,10 +118,127 @@ class SavedModelCheckpointManager(tf.train.CheckpointManager):
return None return None
@property @property
def savedmodels(self): def savedmodels(self) -> List[str]:
"""A list of managed SavedModels. """A list of managed SavedModels.
Returns: Returns:
A list of SavedModel paths, sorted from oldest to newest. A list of SavedModel paths, sorted from oldest to newest.
""" """
return self._savedmodels return self._savedmodels
@property
def modules_to_export(self) -> Union[Mapping[str, tf.Module], None]:
return self._modules_to_export
def get_savedmodel_number_from_path(self,
savedmodel_path: str) -> Union[int, None]:
"""Gets the savedmodel_number/checkpoint_number from savedmodel filepath.
The savedmodel_number is global step when using with orbit controller.
Args:
savedmodel_path: savedmodel directory path.
Returns:
Savedmodel number or None if no matched pattern found in savedmodel path.
"""
pattern = rf'\d+_{SAVED_MODULES_PATH_SUFFIX}$'
savedmodel_number = re.search(pattern, savedmodel_path)
if savedmodel_number:
savedmodel_number = savedmodel_number.group()
return int(savedmodel_number[:-len(SAVED_MODULES_PATH_SUFFIX) - 1])
return None
def savedmodels_iterator(self,
min_interval_secs: float = 0,
timeout: Optional[float] = None,
timeout_fn: Optional[Callable[[], bool]] = None):
"""Continuously yield new SavedModel files as they appear.
The iterator only checks for new savedmodels when control flow has been
reverted to it. The logic is same to the `train.checkpoints_iterator`.
Args:
min_interval_secs: The minimum number of seconds between yielding
savedmodels.
timeout: The maximum number of seconds to wait between savedmodels. If
left as `None`, then the process will wait indefinitely.
timeout_fn: Optional function to call after a timeout. If the function
returns True, then it means that no new savedmodels will be generated
and the iterator will exit. The function is called with no arguments.
Yields:
String paths to latest SavedModel files as they arrive.
"""
savedmodel_path = None
while True:
new_savedmodel_path = self.wait_for_new_savedmodel(
savedmodel_path, timeout=timeout)
if new_savedmodel_path is None:
if not timeout_fn:
# timed out
logging.info('Timed-out waiting for a savedmodel.')
return
if timeout_fn():
# The timeout_fn indicated that we are truly done.
return
else:
# The timeout_fn indicated that more savedmodels may come.
continue
start = time.time()
savedmodel_path = new_savedmodel_path
yield savedmodel_path
time_to_next_eval = start + min_interval_secs - time.time()
if time_to_next_eval > 0:
time.sleep(time_to_next_eval)
def wait_for_new_savedmodel(
self,
last_savedmodel: Optional[str] = None,
seconds_to_sleep: float = 1.0,
timeout: Optional[float] = None) -> Union[str, None]:
"""Waits until a new savedmodel file is found.
Args:
last_savedmodel: The last savedmodel path used or `None` if we're
expecting a savedmodel for the first time.
seconds_to_sleep: The number of seconds to sleep for before looking for a
new savedmodel.
timeout: The maximum number of seconds to wait. If left as `None`, then
the process will wait indefinitely.
Returns:
A new savedmodel path, or None if the timeout was reached.
"""
logging.info('Waiting for new savedmodel at %s', self._directory)
stop_time = time.time() + timeout if timeout is not None else None
last_savedmodel_number = 0
if last_savedmodel:
last_savedmodel_number = self.get_savedmodel_number_from_path(
last_savedmodel)
while True:
if stop_time is not None and time.time() + seconds_to_sleep > stop_time:
return None
existing_savedmodels = {}
for savedmodel_path in self.get_existing_savedmodels():
savedmodel_number = self.get_savedmodel_number_from_path(
savedmodel_path)
if savedmodel_number is not None:
existing_savedmodels[savedmodel_number] = savedmodel_path
# Find the first savedmodel with larger step number as next savedmodel.
savedmodel_path = None
existing_savedmodels = dict(sorted(existing_savedmodels.items()))
for savedmodel_number in existing_savedmodels:
if savedmodel_number > last_savedmodel_number:
savedmodel_path = existing_savedmodels[savedmodel_number]
break
if savedmodel_path:
logging.info('Found new savedmodel at %s', savedmodel_path)
return savedmodel_path
else:
time.sleep(seconds_to_sleep)
...@@ -13,6 +13,7 @@ ...@@ -13,6 +13,7 @@
# limitations under the License. # limitations under the License.
import os import os
import time
from typing import Iterable from typing import Iterable
import tensorflow as tf import tensorflow as tf
...@@ -32,12 +33,20 @@ def _models_exist(checkpoint_path: str, models: Iterable[str]) -> bool: ...@@ -32,12 +33,20 @@ def _models_exist(checkpoint_path: str, models: Iterable[str]) -> bool:
class CheckpointManagerTest(tf.test.TestCase): class CheckpointManagerTest(tf.test.TestCase):
def testSimpleTest(self): def _create_manager(self, max_to_keep: int = 1) -> tf.train.CheckpointManager:
"""Sets up SavedModelCheckpointManager object.
Args:
max_to_keep: max number of savedmodels to keep.
Returns:
created savedmodel manager.
"""
models = { models = {
"model_1": 'model_1':
tf.keras.Sequential( tf.keras.Sequential(
layers=[tf.keras.layers.Dense(8, input_shape=(16,))]), layers=[tf.keras.layers.Dense(8, input_shape=(16,))]),
"model_2": 'model_2':
tf.keras.Sequential( tf.keras.Sequential(
layers=[tf.keras.layers.Dense(16, input_shape=(32,))]), layers=[tf.keras.layers.Dense(16, input_shape=(32,))]),
} }
...@@ -45,9 +54,13 @@ class CheckpointManagerTest(tf.test.TestCase): ...@@ -45,9 +54,13 @@ class CheckpointManagerTest(tf.test.TestCase):
manager = savedmodel_checkpoint_manager.SavedModelCheckpointManager( manager = savedmodel_checkpoint_manager.SavedModelCheckpointManager(
checkpoint=checkpoint, checkpoint=checkpoint,
directory=self.get_temp_dir(), directory=self.get_temp_dir(),
max_to_keep=1, max_to_keep=max_to_keep,
modules_to_export=models) modules_to_export=models)
return manager
def test_max_to_keep(self):
manager = self._create_manager()
models = manager.modules_to_export
first_path = manager.save() first_path = manager.save()
second_path = manager.save() second_path = manager.save()
...@@ -57,6 +70,45 @@ class CheckpointManagerTest(tf.test.TestCase): ...@@ -57,6 +70,45 @@ class CheckpointManagerTest(tf.test.TestCase):
self.assertTrue(_models_exist(second_path, models.keys())) self.assertTrue(_models_exist(second_path, models.keys()))
self.assertFalse(_models_exist(first_path, models.keys())) self.assertFalse(_models_exist(first_path, models.keys()))
def test_returns_none_after_timeout(self):
manager = self._create_manager()
start = time.time()
ret = manager.wait_for_new_savedmodel(
None, timeout=1.0, seconds_to_sleep=0.5)
end = time.time()
self.assertIsNone(ret)
# We've waited 0.5 second.
self.assertGreater(end, start + 0.5)
# The timeout kicked in.
self.assertLess(end, start + 0.6)
def test_saved_model_iterator(self):
manager = self._create_manager(max_to_keep=2)
self.assertIsNotNone(manager.save(checkpoint_number=1))
self.assertIsNotNone(manager.save(checkpoint_number=2))
self.assertIsNotNone(manager.save(checkpoint_number=3))
# Savedmodels are in time order.
expected_savedmodels = manager.savedmodels
# Order not guaranteed.
existing_savedmodels = manager.get_existing_savedmodels()
savedmodels = list(manager.savedmodels_iterator(timeout=3.0))
self.assertEqual(savedmodels, expected_savedmodels)
self.assertEqual(set(savedmodels), set(existing_savedmodels))
def test_saved_model_iterator_timeout_fn(self):
manager = self._create_manager()
timeout_fn_calls = [0]
def timeout_fn():
timeout_fn_calls[0] += 1
return timeout_fn_calls[0] > 3
results = list(
manager.savedmodels_iterator(timeout=0.1, timeout_fn=timeout_fn))
self.assertEqual([], results)
self.assertEqual(4, timeout_fn_calls[0])
if __name__ == "__main__": if __name__ == '__main__':
tf.test.main() tf.test.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment