"vscode:/vscode.git/clone" did not exist on "86bb5e1a19464c5ae506a03c6f5fcf3970c35f78"
Commit be2a21a6 authored by Frederick Liu's avatar Frederick Liu Committed by A. Unique TensorFlower
Browse files

[vision] Add GIOU https://giou.stanford.edu/GIoU.pdf.

PiperOrigin-RevId: 388547681
parent 59e1ab8a
......@@ -624,6 +624,76 @@ def bbox_overlap(boxes, gt_boxes):
return iou
def bbox_generalized_overlap(boxes, gt_boxes):
"""Calculates the GIOU between proposal and ground truth boxes.
The generalized intersection of union is an adjustment of the traditional IOU
metric which provides continuous updates even for predictions with no overlap.
This metric is defined in https://giou.stanford.edu/GIoU.pdf. Note, some
`gt_boxes` may have been padded. The returned `giou` tensor for these boxes
will be -1.
Args:
boxes: a `Tensor` with a shape of [batch_size, N, 4]. N is the number of
proposals before groundtruth assignment (e.g., rpn_post_nms_topn). The
last dimension is the pixel coordinates in [ymin, xmin, ymax, xmax] form.
gt_boxes: a `Tensor` with a shape of [batch_size, max_num_instances, 4].
This tensor may have paddings with a negative value and will also be in
the [ymin, xmin, ymax, xmax] format.
Returns:
giou: a `Tensor` with as a shape of [batch_size, N, max_num_instances].
"""
with tf.name_scope('bbox_generalized_overlap'):
assert boxes.shape.as_list(
)[-1] == 4, 'Boxes must be defined by 4 coordinates.'
assert gt_boxes.shape.as_list(
)[-1] == 4, 'Groundtruth boxes must be defined by 4 coordinates.'
bb_y_min, bb_x_min, bb_y_max, bb_x_max = tf.split(
value=boxes, num_or_size_splits=4, axis=2)
gt_y_min, gt_x_min, gt_y_max, gt_x_max = tf.split(
value=gt_boxes, num_or_size_splits=4, axis=2)
# Calculates the hull area for each pair of boxes, with one from
# boxes and the other from gt_boxes.
# Outputs for coordinates are of shape [batch_size, N, max_num_instances]
h_xmin = tf.minimum(bb_x_min, tf.transpose(gt_x_min, [0, 2, 1]))
h_xmax = tf.maximum(bb_x_max, tf.transpose(gt_x_max, [0, 2, 1]))
h_ymin = tf.minimum(bb_y_min, tf.transpose(gt_y_min, [0, 2, 1]))
h_ymax = tf.maximum(bb_y_max, tf.transpose(gt_y_max, [0, 2, 1]))
h_area = tf.maximum((h_xmax - h_xmin), 0) * tf.maximum((h_ymax - h_ymin), 0)
# Add a small epsilon to avoid divide-by-zero.
h_area = h_area + 1e-8
# Calculates the intersection area.
i_xmin = tf.maximum(bb_x_min, tf.transpose(gt_x_min, [0, 2, 1]))
i_xmax = tf.minimum(bb_x_max, tf.transpose(gt_x_max, [0, 2, 1]))
i_ymin = tf.maximum(bb_y_min, tf.transpose(gt_y_min, [0, 2, 1]))
i_ymax = tf.minimum(bb_y_max, tf.transpose(gt_y_max, [0, 2, 1]))
i_area = tf.maximum((i_xmax - i_xmin), 0) * tf.maximum((i_ymax - i_ymin), 0)
# Calculates the union area.
bb_area = (bb_y_max - bb_y_min) * (bb_x_max - bb_x_min)
gt_area = (gt_y_max - gt_y_min) * (gt_x_max - gt_x_min)
# Adds a small epsilon to avoid divide-by-zero.
u_area = bb_area + tf.transpose(gt_area, [0, 2, 1]) - i_area + 1e-8
# Calculates IoU.
iou = i_area / u_area
# Calculates GIoU.
giou = iou - (h_area - u_area) / h_area
# Fills -1 for GIoU entries between the padded ground truth boxes.
gt_invalid_mask = tf.less(
tf.reduce_max(gt_boxes, axis=-1, keepdims=True), 0.0)
padding_mask = tf.broadcast_to(
tf.transpose(gt_invalid_mask, [0, 2, 1]), tf.shape(giou))
giou = tf.where(padding_mask, -tf.ones_like(giou), giou)
return giou
def box_matching(boxes, gt_boxes, gt_classes):
"""Match boxes to groundtruth boxes.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment