Commit bddffa3e authored by Vishnu Banna's avatar Vishnu Banna
Browse files

model output size

parent 89eb58bc
...@@ -286,8 +286,7 @@ class Parser(parser.Parser): ...@@ -286,8 +286,7 @@ class Parser(parser.Parser):
# Clip and clean boxes. # Clip and clean boxes.
image = image / 255.0 image = image / 255.0
boxes, inds = preprocessing_ops.transform_and_clip_boxes( boxes, inds = preprocessing_ops.transform_and_clip_boxes(
boxes, infos, shuffle_boxes=False, area_thresh=0.0, augment=True, boxes, infos, shuffle_boxes=False, area_thresh=0.0, augment=True)
output_size = [self._image_h, self._image_w])
classes = tf.gather(classes, inds) classes = tf.gather(classes, inds)
info = infos[-1] info = infos[-1]
......
...@@ -115,5 +115,5 @@ class YoloDetectionInputTest(tf.test.TestCase, parameterized.TestCase): ...@@ -115,5 +115,5 @@ class YoloDetectionInputTest(tf.test.TestCase, parameterized.TestCase):
if __name__ == '__main__': if __name__ == '__main__':
tf.test.main() # tf.test.main()
test_yolo_pipeline_visually(is_training=False, num=20) test_yolo_pipeline_visually(is_training=True, num=20)
\ No newline at end of file \ No newline at end of file
...@@ -180,8 +180,7 @@ class Mosaic: ...@@ -180,8 +180,7 @@ class Mosaic:
area_thresh=self._area_thresh, area_thresh=self._area_thresh,
shuffle_boxes=False, shuffle_boxes=False,
augment=True, augment=True,
seed=self._seed, seed=self._seed)
output_size=[self._output_size[0], self._output_size[1]])
classes, is_crowd, area = self._select_ind(inds, classes, is_crowd, area) # pylint:disable=unbalanced-tuple-unpacking classes, is_crowd, area = self._select_ind(inds, classes, is_crowd, area) # pylint:disable=unbalanced-tuple-unpacking
return image, boxes, classes, is_crowd, area, crop_points return image, boxes, classes, is_crowd, area, crop_points
...@@ -230,8 +229,7 @@ class Mosaic: ...@@ -230,8 +229,7 @@ class Mosaic:
None, None,
affine=affine, affine=affine,
area_thresh=self._area_thresh, area_thresh=self._area_thresh,
seed=self._seed, seed=self._seed)
output_size=[self._output_size[0], self._output_size[1]])
classes, is_crowd, area = self._select_ind(inds, classes, is_crowd, area) # pylint:disable=unbalanced-tuple-unpacking classes, is_crowd, area = self._select_ind(inds, classes, is_crowd, area) # pylint:disable=unbalanced-tuple-unpacking
return image, boxes, classes, is_crowd, area, area return image, boxes, classes, is_crowd, area, area
......
...@@ -780,8 +780,8 @@ def boxes_candidates(clipped_boxes, ...@@ -780,8 +780,8 @@ def boxes_candidates(clipped_boxes,
clipped_height / (clipped_width + 1e-16)) clipped_height / (clipped_width + 1e-16))
# Ensure the clipped width adn height are larger than a preset threshold. # Ensure the clipped width adn height are larger than a preset threshold.
conda = clipped_width > wh_thr conda = clipped_width >= wh_thr
condb = clipped_height > wh_thr condb = clipped_height >= wh_thr
# Ensure the area of the clipped box is larger than the area threshold. # Ensure the area of the clipped box is larger than the area threshold.
area = (clipped_height * clipped_width) / (og_width * og_height + 1e-16) area = (clipped_height * clipped_width) / (og_width * og_height + 1e-16)
...@@ -839,8 +839,7 @@ def transform_and_clip_boxes(boxes, ...@@ -839,8 +839,7 @@ def transform_and_clip_boxes(boxes,
shuffle_boxes=False, shuffle_boxes=False,
area_thresh=0.1, area_thresh=0.1,
seed=None, seed=None,
augment=True, augment=True):
output_size = None):
"""Clips and cleans the boxes. """Clips and cleans the boxes.
Args: Args:
...@@ -871,10 +870,11 @@ def transform_and_clip_boxes(boxes, ...@@ -871,10 +870,11 @@ def transform_and_clip_boxes(boxes,
# Make sure all boxes are valid to start, clip to [0, 1] and get only the # Make sure all boxes are valid to start, clip to [0, 1] and get only the
# valid boxes. # valid boxes.
if output_size is None: # if output_size is None:
output_size = tf.cast([640, 640], tf.float32) # output_size = tf.cast([640, 640], tf.float32)
else: # else:
output_size = tf.cast(output_size, tf.float32) # output_size = tf.cast(output_size, tf.float32)
output_size = None
if augment: if augment:
boxes = tf.math.maximum(tf.math.minimum(boxes, 1.0), 0.0) boxes = tf.math.maximum(tf.math.minimum(boxes, 1.0), 0.0)
cond = get_valid_boxes(boxes) cond = get_valid_boxes(boxes)
...@@ -925,15 +925,16 @@ def transform_and_clip_boxes(boxes, ...@@ -925,15 +925,16 @@ def transform_and_clip_boxes(boxes,
# Threshold the existing boxes. # Threshold the existing boxes.
if augment: if augment:
boxes_ = bbox_ops.denormalize_boxes(boxes, output_size) if output_size is not None:
box_history_ = bbox_ops.denormalize_boxes(box_history, output_size) boxes_ = bbox_ops.denormalize_boxes(boxes, output_size)
inds = boxes_candidates(boxes_, box_history_, area_thr=area_thresh) box_history_ = bbox_ops.denormalize_boxes(box_history, output_size)
inds = boxes_candidates(boxes_, box_history_, area_thr=area_thresh)
else:
inds = boxes_candidates(boxes, box_history, wh_thr = 0.0, area_thr=area_thresh)
# Select and gather the good boxes. # Select and gather the good boxes.
if shuffle_boxes: if shuffle_boxes:
inds = tf.random.shuffle(inds, seed=seed) inds = tf.random.shuffle(inds, seed=seed)
else: else:
boxes = box_history inds = bbox_ops.get_non_empty_box_indices(boxes)
boxes_ = bbox_ops.denormalize_boxes(boxes, output_size)
inds = bbox_ops.get_non_empty_box_indices(boxes_)
boxes = tf.gather(boxes, inds) boxes = tf.gather(boxes, inds)
return boxes, inds return boxes, inds
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment