Commit b796549a authored by vedanshu's avatar vedanshu
Browse files

detection unit test file added.

parent 9986e124
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Test for image detection export lib."""
import io
import os
from absl.testing import parameterized
import numpy as np
from PIL import Image
import tensorflow as tf
from official.vision.beta.projects.deepmac_maskrcnn.tasks import deep_mask_head_rcnn
from official.core import exp_factory
from official.vision.beta.projects.deepmac_maskrcnn.serving import detection
class DetectionExportTest(tf.test.TestCase, parameterized.TestCase):
def _get_detection_module(self, experiment_name):
params = exp_factory.get_exp_config(experiment_name)
params.task.model.backbone.resnet.model_id = 18
params.task.model.detection_generator.use_batched_nms = True
detection_module = detection.DetectionModule(
params, batch_size=1, input_image_size=[640, 640])
return detection_module
def _export_from_module(self, module, input_type, save_directory):
signatures = module.get_inference_signatures(
{input_type: 'serving_default'})
tf.saved_model.save(module, save_directory, signatures=signatures)
def _get_dummy_input(self, input_type, batch_size, image_size):
"""Get dummy input for the given input type."""
h, w = image_size
if input_type == 'image_tensor':
return tf.zeros((batch_size, h, w, 3), dtype=np.uint8)
elif input_type == 'image_bytes':
image = Image.fromarray(np.zeros((h, w, 3), dtype=np.uint8))
byte_io = io.BytesIO()
image.save(byte_io, 'PNG')
return [byte_io.getvalue() for b in range(batch_size)]
elif input_type == 'tf_example':
image_tensor = tf.zeros((h, w, 3), dtype=tf.uint8)
encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).numpy()
example = tf.train.Example(
features=tf.train.Features(
feature={
'image/encoded':
tf.train.Feature(
bytes_list=tf.train.BytesList(value=[encoded_jpeg])),
})).SerializeToString()
return [example for b in range(batch_size)]
@parameterized.parameters(
('image_tensor', 'deep_mask_head_rcnn_resnetfpn_coco', [640, 640]),
('image_bytes', 'deep_mask_head_rcnn_resnetfpn_coco', [640, 384]),
('tf_example', 'deep_mask_head_rcnn_resnetfpn_coco', [640, 640]),
)
def test_export(self, input_type, experiment_name, image_size):
tmp_dir = self.get_temp_dir()
module = self._get_detection_module(experiment_name)
self._export_from_module(module, input_type, tmp_dir)
self.assertTrue(os.path.exists(os.path.join(tmp_dir, 'saved_model.pb')))
self.assertTrue(
os.path.exists(os.path.join(tmp_dir, 'variables', 'variables.index')))
self.assertTrue(
os.path.exists(
os.path.join(tmp_dir, 'variables',
'variables.data-00000-of-00001')))
imported = tf.saved_model.load(tmp_dir)
detection_fn = imported.signatures['serving_default']
images = self._get_dummy_input(
input_type, batch_size=1, image_size=image_size)
processed_images, anchor_boxes, image_info = module._build_inputs(
tf.zeros((224, 224, 3), dtype=tf.uint8))
image_shape = image_info[1, :]
image_shape = tf.expand_dims(image_shape, 0)
processed_images = tf.expand_dims(processed_images, 0)
for l, l_boxes in anchor_boxes.items():
anchor_boxes[l] = tf.expand_dims(l_boxes, 0)
expected_outputs = module.model(
images=processed_images,
image_shape=image_shape,
anchor_boxes=anchor_boxes,
training=False)
outputs = detection_fn(tf.constant(images))
self.assertAllClose(outputs['num_detections'].numpy(),
expected_outputs['num_detections'].numpy())
if __name__ == '__main__':
tf.test.main()
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment