Commit b58f478c authored by Scott Zhu's avatar Scott Zhu Committed by A. Unique TensorFlower
Browse files

Prepare for upcoming keras initializer change.

PiperOrigin-RevId: 451476877
parent 5b92f9f0
...@@ -17,6 +17,7 @@ from typing import Callable, Dict, Optional, Sequence, Set, Text, Tuple, Type, U ...@@ -17,6 +17,7 @@ from typing import Callable, Dict, Optional, Sequence, Set, Text, Tuple, Type, U
import tensorflow as tf import tensorflow as tf
from official.modeling import tf_utils
from official.projects.s3d.modeling import net_utils from official.projects.s3d.modeling import net_utils
from official.vision.modeling.layers import nn_blocks_3d from official.vision.modeling.layers import nn_blocks_3d
...@@ -126,7 +127,7 @@ def inception_v1_stem_cells( ...@@ -126,7 +127,7 @@ def inception_v1_stem_cells(
strides=[2, 2, 2], strides=[2, 2, 2],
padding='same', padding='same',
use_bias=False, use_bias=False,
kernel_initializer=kernel_initializer, kernel_initializer=tf_utils.clone_initializer(kernel_initializer),
kernel_regularizer=kernel_regularizer, kernel_regularizer=kernel_regularizer,
name=layer_naming_fn(end_point))( name=layer_naming_fn(end_point))(
inputs) inputs)
...@@ -161,7 +162,7 @@ def inception_v1_stem_cells( ...@@ -161,7 +162,7 @@ def inception_v1_stem_cells(
kernel_size=[1, 1, 1], kernel_size=[1, 1, 1],
padding='same', padding='same',
use_bias=False, use_bias=False,
kernel_initializer=kernel_initializer, kernel_initializer=tf_utils.clone_initializer(kernel_initializer),
kernel_regularizer=kernel_regularizer, kernel_regularizer=kernel_regularizer,
name=layer_naming_fn(end_point))( name=layer_naming_fn(end_point))(
net) net)
...@@ -191,7 +192,7 @@ def inception_v1_stem_cells( ...@@ -191,7 +192,7 @@ def inception_v1_stem_cells(
norm_momentum=norm_momentum, norm_momentum=norm_momentum,
norm_epsilon=norm_epsilon, norm_epsilon=norm_epsilon,
temporal_conv_initializer=temporal_conv_initializer, temporal_conv_initializer=temporal_conv_initializer,
kernel_initializer=kernel_initializer, kernel_initializer=tf_utils.clone_initializer(kernel_initializer),
kernel_regularizer=kernel_regularizer, kernel_regularizer=kernel_regularizer,
name=layer_naming_fn(end_point))( name=layer_naming_fn(end_point))(
net) net)
...@@ -330,7 +331,8 @@ class InceptionV1CellLayer(tf.keras.layers.Layer): ...@@ -330,7 +331,8 @@ class InceptionV1CellLayer(tf.keras.layers.Layer):
kernel_size=[1, 1, 1], kernel_size=[1, 1, 1],
padding='same', padding='same',
use_bias=False, use_bias=False,
kernel_initializer=self._kernel_initializer, kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
kernel_regularizer=self._kernel_regularizer), kernel_regularizer=self._kernel_regularizer),
# norm # norm
dict( dict(
...@@ -349,7 +351,8 @@ class InceptionV1CellLayer(tf.keras.layers.Layer): ...@@ -349,7 +351,8 @@ class InceptionV1CellLayer(tf.keras.layers.Layer):
kernel_size=[1, 1, 1], kernel_size=[1, 1, 1],
padding='same', padding='same',
use_bias=False, use_bias=False,
kernel_initializer=self._kernel_initializer, kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
kernel_regularizer=self._kernel_regularizer), kernel_regularizer=self._kernel_regularizer),
# norm # norm
dict( dict(
...@@ -371,7 +374,8 @@ class InceptionV1CellLayer(tf.keras.layers.Layer): ...@@ -371,7 +374,8 @@ class InceptionV1CellLayer(tf.keras.layers.Layer):
norm_momentum=self._norm_momentum, norm_momentum=self._norm_momentum,
norm_epsilon=self._norm_epsilon, norm_epsilon=self._norm_epsilon,
temporal_conv_initializer=self._temporal_conv_initializer, temporal_conv_initializer=self._temporal_conv_initializer,
kernel_initializer=self._kernel_initializer, kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
kernel_regularizer=self._kernel_regularizer), kernel_regularizer=self._kernel_regularizer),
] ]
branch_2_params = [ branch_2_params = [
...@@ -381,7 +385,8 @@ class InceptionV1CellLayer(tf.keras.layers.Layer): ...@@ -381,7 +385,8 @@ class InceptionV1CellLayer(tf.keras.layers.Layer):
kernel_size=[1, 1, 1], kernel_size=[1, 1, 1],
padding='same', padding='same',
use_bias=False, use_bias=False,
kernel_initializer=self._kernel_initializer, kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
kernel_regularizer=self._kernel_regularizer), kernel_regularizer=self._kernel_regularizer),
# norm # norm
dict( dict(
...@@ -403,7 +408,8 @@ class InceptionV1CellLayer(tf.keras.layers.Layer): ...@@ -403,7 +408,8 @@ class InceptionV1CellLayer(tf.keras.layers.Layer):
norm_momentum=self._norm_momentum, norm_momentum=self._norm_momentum,
norm_epsilon=self._norm_epsilon, norm_epsilon=self._norm_epsilon,
temporal_conv_initializer=self._temporal_conv_initializer, temporal_conv_initializer=self._temporal_conv_initializer,
kernel_initializer=self._kernel_initializer, kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
kernel_regularizer=self._kernel_regularizer) kernel_regularizer=self._kernel_regularizer)
] ]
branch_3_params = [ branch_3_params = [
...@@ -413,7 +419,8 @@ class InceptionV1CellLayer(tf.keras.layers.Layer): ...@@ -413,7 +419,8 @@ class InceptionV1CellLayer(tf.keras.layers.Layer):
kernel_size=[1, 1, 1], kernel_size=[1, 1, 1],
padding='same', padding='same',
use_bias=False, use_bias=False,
kernel_initializer=self._kernel_initializer, kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
kernel_regularizer=self._kernel_regularizer), kernel_regularizer=self._kernel_regularizer),
# norm # norm
dict( dict(
......
...@@ -16,6 +16,7 @@ ...@@ -16,6 +16,7 @@
from typing import Any, Text, Sequence, Union from typing import Any, Text, Sequence, Union
import tensorflow as tf import tensorflow as tf
from official.modeling import tf_utils
WEIGHT_INITIALIZER = { WEIGHT_INITIALIZER = {
'Xavier': tf.keras.initializers.GlorotUniform, 'Xavier': tf.keras.initializers.GlorotUniform,
...@@ -94,7 +95,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer): ...@@ -94,7 +95,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer):
kernel_size=[self._kernel_size] * 3, kernel_size=[self._kernel_size] * 3,
strides=self._strides, strides=self._strides,
dilation_rate=self._rates, dilation_rate=self._rates,
kernel_initializer=self._kernel_initializer, kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
)) ))
elif self._conv_type == '2d': elif self._conv_type == '2d':
conv_layer_params.append( conv_layer_params.append(
...@@ -103,7 +105,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer): ...@@ -103,7 +105,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer):
kernel_size=[1, self._kernel_size, self._kernel_size], kernel_size=[1, self._kernel_size, self._kernel_size],
strides=[1, self._strides[1], self._strides[2]], strides=[1, self._strides[1], self._strides[2]],
dilation_rate=[1, self._rates[1], self._rates[2]], dilation_rate=[1, self._rates[1], self._rates[2]],
kernel_initializer=self._kernel_initializer, kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
)) ))
elif self._conv_type == '1+2d': elif self._conv_type == '1+2d':
channels_in = input_shape[self._channel_axis] channels_in = input_shape[self._channel_axis]
...@@ -113,7 +116,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer): ...@@ -113,7 +116,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer):
kernel_size=[self._kernel_size, 1, 1], kernel_size=[self._kernel_size, 1, 1],
strides=[self._strides[0], 1, 1], strides=[self._strides[0], 1, 1],
dilation_rate=[self._rates[0], 1, 1], dilation_rate=[self._rates[0], 1, 1],
kernel_initializer=self._temporal_conv_initializer, kernel_initializer=tf_utils.clone_initializer(
self._temporal_conv_initializer),
)) ))
conv_layer_params.append( conv_layer_params.append(
dict( dict(
...@@ -121,7 +125,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer): ...@@ -121,7 +125,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer):
kernel_size=[1, self._kernel_size, self._kernel_size], kernel_size=[1, self._kernel_size, self._kernel_size],
strides=[1, self._strides[1], self._strides[2]], strides=[1, self._strides[1], self._strides[2]],
dilation_rate=[1, self._rates[1], self._rates[2]], dilation_rate=[1, self._rates[1], self._rates[2]],
kernel_initializer=self._kernel_initializer, kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
)) ))
elif self._conv_type == '2+1d': elif self._conv_type == '2+1d':
conv_layer_params.append( conv_layer_params.append(
...@@ -130,7 +135,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer): ...@@ -130,7 +135,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer):
kernel_size=[1, self._kernel_size, self._kernel_size], kernel_size=[1, self._kernel_size, self._kernel_size],
strides=[1, self._strides[1], self._strides[2]], strides=[1, self._strides[1], self._strides[2]],
dilation_rate=[1, self._rates[1], self._rates[2]], dilation_rate=[1, self._rates[1], self._rates[2]],
kernel_initializer=self._kernel_initializer, kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
)) ))
conv_layer_params.append( conv_layer_params.append(
dict( dict(
...@@ -138,7 +144,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer): ...@@ -138,7 +144,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer):
kernel_size=[self._kernel_size, 1, 1], kernel_size=[self._kernel_size, 1, 1],
strides=[self._strides[0], 1, 1], strides=[self._strides[0], 1, 1],
dilation_rate=[self._rates[0], 1, 1], dilation_rate=[self._rates[0], 1, 1],
kernel_initializer=self._temporal_conv_initializer, kernel_initializer=tf_utils.clone_initializer(
self._temporal_conv_initializer),
)) ))
elif self._conv_type == '1+1+1d': elif self._conv_type == '1+1+1d':
conv_layer_params.append( conv_layer_params.append(
...@@ -147,7 +154,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer): ...@@ -147,7 +154,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer):
kernel_size=[1, 1, self._kernel_size], kernel_size=[1, 1, self._kernel_size],
strides=[1, 1, self._strides[2]], strides=[1, 1, self._strides[2]],
dilation_rate=[1, 1, self._rates[2]], dilation_rate=[1, 1, self._rates[2]],
kernel_initializer=self._kernel_initializer, kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
)) ))
conv_layer_params.append( conv_layer_params.append(
dict( dict(
...@@ -155,7 +163,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer): ...@@ -155,7 +163,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer):
kernel_size=[1, self._kernel_size, 1], kernel_size=[1, self._kernel_size, 1],
strides=[1, self._strides[1], 1], strides=[1, self._strides[1], 1],
dilation_rate=[1, self._rates[1], 1], dilation_rate=[1, self._rates[1], 1],
kernel_initializer=self._kernel_initializer, kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
)) ))
conv_layer_params.append( conv_layer_params.append(
dict( dict(
...@@ -163,7 +172,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer): ...@@ -163,7 +172,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer):
kernel_size=[self._kernel_size, 1, 1], kernel_size=[self._kernel_size, 1, 1],
strides=[self._strides[0], 1, 1], strides=[self._strides[0], 1, 1],
dilation_rate=[self._rates[0], 1, 1], dilation_rate=[self._rates[0], 1, 1],
kernel_initializer=self._kernel_initializer, kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
)) ))
else: else:
raise ValueError('Unsupported conv_type: {}'.format(self._conv_type)) raise ValueError('Unsupported conv_type: {}'.format(self._conv_type))
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment