"git@developer.sourcefind.cn:modelzoo/centerface_pytorch.git" did not exist on "cab4a2ba0bc533143bfa0f07f9b171a89e554b93"
Unverified Commit af41cc00 authored by Mark Daoust's avatar Mark Daoust Committed by GitHub
Browse files

Merge pull request #4927 from mdanatg/master

Fix a couple of bugs and edit spacing
parents 89e30510 741690f9
...@@ -593,19 +593,19 @@ ...@@ -593,19 +593,19 @@
"cell_type": "code", "cell_type": "code",
"source": [ "source": [
"@autograph.convert()\n", "@autograph.convert()\n",
"def fizzbuzz_each(nums):\n", "def squares(nums):\n",
"\n", "\n",
" result = []\n", " result = []\n",
" autograph.set_element_type(result, tf.string)\n", " autograph.set_element_type(result, tf.int64)\n",
"\n", "\n",
" for num in nums: \n", " for num in nums: \n",
" result.append(fizzbuzz(num))\n", " result.append(num * num)\n",
" \n", " \n",
" return autograph.stack(result)\n", " return autograph.stack(result)\n",
" \n", " \n",
"with tf.Graph().as_default(): \n", "with tf.Graph().as_default(): \n",
" with tf.Session() as sess:\n", " with tf.Session() as sess:\n",
" print(sess.run(fizzbuzz_each(tf.constant(np.arange(10)))))" " print(sess.run(squares(tf.constant(np.arange(10)))))"
], ],
"execution_count": 0, "execution_count": 0,
"outputs": [] "outputs": []
...@@ -679,24 +679,24 @@ ...@@ -679,24 +679,24 @@
"\n", "\n",
"@autograph.convert()\n", "@autograph.convert()\n",
"def collatz(x):\n", "def collatz(x):\n",
" x=tf.reshape(x,())\n", " x = tf.reshape(x,())\n",
" assert x>0\n", " assert x > 0\n",
" n = tf.convert_to_tensor((0,)) \n", " n = tf.convert_to_tensor((0,)) \n",
" while not tf.equal(x,1):\n", " while not tf.equal(x, 1):\n",
" n+=1\n", " n += 1\n",
" if tf.equal(x%2, 0):\n", " if tf.equal(x%2, 0):\n",
" x = x//2\n", " x = x // 2\n",
" else:\n", " else:\n",
" x = 3*x+1\n", " x = 3 * x + 1\n",
" \n", " \n",
" return n\n", " return n\n",
"\n", "\n",
"with tf.Graph().as_default():\n", "with tf.Graph().as_default():\n",
" model = tf.keras.Sequential([\n", " model = tf.keras.Sequential([\n",
" tf.keras.layers.Lambda(collatz, input_shape=(1,), output_shape=(), )\n", " tf.keras.layers.Lambda(collatz, input_shape=(1,), output_shape=())\n",
" ])\n", " ])\n",
" \n", " \n",
"result = model.predict(np.array([6171])) #261\n", "result = model.predict(np.array([6171]))\n",
"result" "result"
], ],
"execution_count": 0, "execution_count": 0,
...@@ -738,7 +738,7 @@ ...@@ -738,7 +738,7 @@
" def build(self,input_shape):\n", " def build(self,input_shape):\n",
" super().build(input_shape.as_list())\n", " super().build(input_shape.as_list())\n",
" self.depth = len(self.layers)\n", " self.depth = len(self.layers)\n",
" self.plims = np.linspace(self.pfirst, self.plast, self.depth+1)[:-1]\n", " self.plims = np.linspace(self.pfirst, self.plast, self.depth + 1)[:-1]\n",
" \n", " \n",
" @autograph.convert()\n", " @autograph.convert()\n",
" def call(self, inputs):\n", " def call(self, inputs):\n",
...@@ -749,7 +749,7 @@ ...@@ -749,7 +749,7 @@
" \n", " \n",
" p = tf.random_uniform((self.depth,))\n", " p = tf.random_uniform((self.depth,))\n",
" \n", " \n",
" keeps = p<=self.plims\n", " keeps = (p <= self.plims)\n",
" x = inputs\n", " x = inputs\n",
" \n", " \n",
" count = tf.reduce_sum(tf.cast(keeps, tf.int32))\n", " count = tf.reduce_sum(tf.cast(keeps, tf.int32))\n",
...@@ -781,7 +781,7 @@ ...@@ -781,7 +781,7 @@
}, },
"cell_type": "code", "cell_type": "code",
"source": [ "source": [
"train_batch = np.random.randn(64, 28,28,1).astype(np.float32)" "train_batch = np.random.randn(64, 28, 28, 1).astype(np.float32)"
], ],
"execution_count": 0, "execution_count": 0,
"outputs": [] "outputs": []
...@@ -811,9 +811,9 @@ ...@@ -811,9 +811,9 @@
" for n in range(20):\n", " for n in range(20):\n",
" model.add(\n", " model.add(\n",
" layers.Conv2D(filters=16, activation=tf.nn.relu,\n", " layers.Conv2D(filters=16, activation=tf.nn.relu,\n",
" kernel_size=(3,3), padding='same'))\n", " kernel_size=(3, 3), padding='same'))\n",
"\n", "\n",
" model.build(tf.TensorShape((None, None, None,1)))\n", " model.build(tf.TensorShape((None, None, None, 1)))\n",
" \n", " \n",
" init = tf.global_variables_initializer()" " init = tf.global_variables_initializer()"
], ],
...@@ -918,7 +918,6 @@ ...@@ -918,7 +918,6 @@
"source": [ "source": [
"def mlp_model(input_shape):\n", "def mlp_model(input_shape):\n",
" model = tf.keras.Sequential((\n", " model = tf.keras.Sequential((\n",
" tf.keras.layers.Flatten(),\n",
" tf.keras.layers.Dense(100, activation='relu', input_shape=input_shape),\n", " tf.keras.layers.Dense(100, activation='relu', input_shape=input_shape),\n",
" tf.keras.layers.Dense(100, activation='relu'),\n", " tf.keras.layers.Dense(100, activation='relu'),\n",
" tf.keras.layers.Dense(10, activation='softmax')))\n", " tf.keras.layers.Dense(10, activation='softmax')))\n",
...@@ -927,7 +926,7 @@ ...@@ -927,7 +926,7 @@
"\n", "\n",
"\n", "\n",
"def predict(m, x, y):\n", "def predict(m, x, y):\n",
" y_p = m(x)\n", " y_p = m(tf.reshape(x, (-1, 28 * 28)))\n",
" losses = tf.keras.losses.categorical_crossentropy(y, y_p)\n", " losses = tf.keras.losses.categorical_crossentropy(y, y_p)\n",
" l = tf.reduce_mean(losses)\n", " l = tf.reduce_mean(losses)\n",
" accuracies = tf.keras.metrics.categorical_accuracy(y, y_p)\n", " accuracies = tf.keras.metrics.categorical_accuracy(y, y_p)\n",
...@@ -959,7 +958,7 @@ ...@@ -959,7 +958,7 @@
"def get_next_batch(ds):\n", "def get_next_batch(ds):\n",
" itr = ds.make_one_shot_iterator()\n", " itr = ds.make_one_shot_iterator()\n",
" image, label = itr.get_next()\n", " image, label = itr.get_next()\n",
" x = tf.to_float(image)/255.0\n", " x = tf.to_float(image) / 255.0\n",
" y = tf.one_hot(tf.squeeze(label), 10)\n", " y = tf.one_hot(tf.squeeze(label), 10)\n",
" return x, y " " return x, y "
], ],
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment