Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
af41cc00
Unverified
Commit
af41cc00
authored
Jul 30, 2018
by
Mark Daoust
Committed by
GitHub
Jul 30, 2018
Browse files
Merge pull request #4927 from mdanatg/master
Fix a couple of bugs and edit spacing
parents
89e30510
741690f9
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
19 additions
and
20 deletions
+19
-20
samples/core/guide/autograph.ipynb
samples/core/guide/autograph.ipynb
+19
-20
No files found.
samples/core/guide/autograph.ipynb
View file @
af41cc00
...
@@ -593,19 +593,19 @@
...
@@ -593,19 +593,19 @@
"cell_type": "code",
"cell_type": "code",
"source": [
"source": [
"@autograph.convert()\n",
"@autograph.convert()\n",
"def
fizzbuzz_each
(nums):\n",
"def
squares
(nums):\n",
"\n",
"\n",
" result = []\n",
" result = []\n",
" autograph.set_element_type(result, tf.
string
)\n",
" autograph.set_element_type(result, tf.
int64
)\n",
"\n",
"\n",
" for num in nums: \n",
" for num in nums: \n",
" result.append(
fizzbuzz(
num)
)
\n",
" result.append(
num *
num)\n",
" \n",
" \n",
" return autograph.stack(result)\n",
" return autograph.stack(result)\n",
" \n",
" \n",
"with tf.Graph().as_default(): \n",
"with tf.Graph().as_default(): \n",
" with tf.Session() as sess:\n",
" with tf.Session() as sess:\n",
" print(sess.run(
fizzbuzz_each
(tf.constant(np.arange(10)))))"
" print(sess.run(
squares
(tf.constant(np.arange(10)))))"
],
],
"execution_count": 0,
"execution_count": 0,
"outputs": []
"outputs": []
...
@@ -679,24 +679,24 @@
...
@@ -679,24 +679,24 @@
"\n",
"\n",
"@autograph.convert()\n",
"@autograph.convert()\n",
"def collatz(x):\n",
"def collatz(x):\n",
" x
=
tf.reshape(x,())\n",
" x
=
tf.reshape(x,())\n",
" assert x
>
0\n",
" assert x
>
0\n",
" n = tf.convert_to_tensor((0,)) \n",
" n = tf.convert_to_tensor((0,)) \n",
" while not tf.equal(x,1):\n",
" while not tf.equal(x,
1):\n",
" n+=1\n",
" n
+=
1\n",
" if tf.equal(x%2, 0):\n",
" if tf.equal(x%2, 0):\n",
" x = x//2\n",
" x = x
//
2\n",
" else:\n",
" else:\n",
" x = 3
*x+
1\n",
" x = 3
* x +
1\n",
" \n",
" \n",
" return n\n",
" return n\n",
"\n",
"\n",
"with tf.Graph().as_default():\n",
"with tf.Graph().as_default():\n",
" model = tf.keras.Sequential([\n",
" model = tf.keras.Sequential([\n",
" tf.keras.layers.Lambda(collatz, input_shape=(1,), output_shape=()
,
)\n",
" tf.keras.layers.Lambda(collatz, input_shape=(1,), output_shape=())\n",
" ])\n",
" ])\n",
" \n",
" \n",
"result = model.predict(np.array([6171]))
#261
\n",
"result = model.predict(np.array([6171]))\n",
"result"
"result"
],
],
"execution_count": 0,
"execution_count": 0,
...
@@ -738,7 +738,7 @@
...
@@ -738,7 +738,7 @@
" def build(self,input_shape):\n",
" def build(self,input_shape):\n",
" super().build(input_shape.as_list())\n",
" super().build(input_shape.as_list())\n",
" self.depth = len(self.layers)\n",
" self.depth = len(self.layers)\n",
" self.plims = np.linspace(self.pfirst, self.plast, self.depth
+
1)[:-1]\n",
" self.plims = np.linspace(self.pfirst, self.plast, self.depth
+
1)[:-1]\n",
" \n",
" \n",
" @autograph.convert()\n",
" @autograph.convert()\n",
" def call(self, inputs):\n",
" def call(self, inputs):\n",
...
@@ -749,7 +749,7 @@
...
@@ -749,7 +749,7 @@
" \n",
" \n",
" p = tf.random_uniform((self.depth,))\n",
" p = tf.random_uniform((self.depth,))\n",
" \n",
" \n",
" keeps =
p
<=self.plims\n",
" keeps =
(p
<=
self.plims
)
\n",
" x = inputs\n",
" x = inputs\n",
" \n",
" \n",
" count = tf.reduce_sum(tf.cast(keeps, tf.int32))\n",
" count = tf.reduce_sum(tf.cast(keeps, tf.int32))\n",
...
@@ -781,7 +781,7 @@
...
@@ -781,7 +781,7 @@
},
},
"cell_type": "code",
"cell_type": "code",
"source": [
"source": [
"train_batch = np.random.randn(64, 28,28,1).astype(np.float32)"
"train_batch = np.random.randn(64, 28,
28,
1).astype(np.float32)"
],
],
"execution_count": 0,
"execution_count": 0,
"outputs": []
"outputs": []
...
@@ -811,9 +811,9 @@
...
@@ -811,9 +811,9 @@
" for n in range(20):\n",
" for n in range(20):\n",
" model.add(\n",
" model.add(\n",
" layers.Conv2D(filters=16, activation=tf.nn.relu,\n",
" layers.Conv2D(filters=16, activation=tf.nn.relu,\n",
" kernel_size=(3,3), padding='same'))\n",
" kernel_size=(3,
3), padding='same'))\n",
"\n",
"\n",
" model.build(tf.TensorShape((None, None, None,1)))\n",
" model.build(tf.TensorShape((None, None, None,
1)))\n",
" \n",
" \n",
" init = tf.global_variables_initializer()"
" init = tf.global_variables_initializer()"
],
],
...
@@ -918,7 +918,6 @@
...
@@ -918,7 +918,6 @@
"source": [
"source": [
"def mlp_model(input_shape):\n",
"def mlp_model(input_shape):\n",
" model = tf.keras.Sequential((\n",
" model = tf.keras.Sequential((\n",
" tf.keras.layers.Flatten(),\n",
" tf.keras.layers.Dense(100, activation='relu', input_shape=input_shape),\n",
" tf.keras.layers.Dense(100, activation='relu', input_shape=input_shape),\n",
" tf.keras.layers.Dense(100, activation='relu'),\n",
" tf.keras.layers.Dense(100, activation='relu'),\n",
" tf.keras.layers.Dense(10, activation='softmax')))\n",
" tf.keras.layers.Dense(10, activation='softmax')))\n",
...
@@ -927,7 +926,7 @@
...
@@ -927,7 +926,7 @@
"\n",
"\n",
"\n",
"\n",
"def predict(m, x, y):\n",
"def predict(m, x, y):\n",
" y_p = m(
x
)\n",
" y_p = m(
tf.reshape(x, (-1, 28 * 28))
)\n",
" losses = tf.keras.losses.categorical_crossentropy(y, y_p)\n",
" losses = tf.keras.losses.categorical_crossentropy(y, y_p)\n",
" l = tf.reduce_mean(losses)\n",
" l = tf.reduce_mean(losses)\n",
" accuracies = tf.keras.metrics.categorical_accuracy(y, y_p)\n",
" accuracies = tf.keras.metrics.categorical_accuracy(y, y_p)\n",
...
@@ -959,7 +958,7 @@
...
@@ -959,7 +958,7 @@
"def get_next_batch(ds):\n",
"def get_next_batch(ds):\n",
" itr = ds.make_one_shot_iterator()\n",
" itr = ds.make_one_shot_iterator()\n",
" image, label = itr.get_next()\n",
" image, label = itr.get_next()\n",
" x = tf.to_float(image)
/
255.0\n",
" x = tf.to_float(image)
/
255.0\n",
" y = tf.one_hot(tf.squeeze(label), 10)\n",
" y = tf.one_hot(tf.squeeze(label), 10)\n",
" return x, y "
" return x, y "
],
],
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment