Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
ae0a9409
Commit
ae0a9409
authored
Jan 24, 2018
by
cclauss
Browse files
Fix Python 3 Syntax Errors (en masse)
parent
eb7c6e43
Changes
28
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
187 additions
and
167 deletions
+187
-167
research/cognitive_mapping_and_planning/scripts/script_env_vis.py
.../cognitive_mapping_and_planning/scripts/script_env_vis.py
+14
-14
research/cognitive_mapping_and_planning/scripts/script_plot_trajectory.py
...ve_mapping_and_planning/scripts/script_plot_trajectory.py
+31
-31
research/cognitive_mapping_and_planning/src/utils.py
research/cognitive_mapping_and_planning/src/utils.py
+4
-4
research/compression/entropy_coder/core/entropy_coder_single.py
...ch/compression/entropy_coder/core/entropy_coder_single.py
+1
-1
research/compression/entropy_coder/core/entropy_coder_train.py
...rch/compression/entropy_coder/core/entropy_coder_train.py
+1
-1
research/differential_privacy/multiple_teachers/analysis.py
research/differential_privacy/multiple_teachers/analysis.py
+11
-10
research/differential_privacy/privacy_accountant/python/gaussian_moments.py
...ial_privacy/privacy_accountant/python/gaussian_moments.py
+16
-13
research/neural_gpu/neural_gpu.py
research/neural_gpu/neural_gpu.py
+4
-1
research/neural_gpu/neural_gpu_trainer.py
research/neural_gpu/neural_gpu_trainer.py
+24
-23
research/neural_gpu/program_utils.py
research/neural_gpu/program_utils.py
+21
-21
research/neural_gpu/wmt_utils.py
research/neural_gpu/wmt_utils.py
+13
-11
research/neural_programmer/data_utils.py
research/neural_programmer/data_utils.py
+6
-4
research/neural_programmer/model.py
research/neural_programmer/model.py
+7
-6
research/neural_programmer/neural_programmer.py
research/neural_programmer/neural_programmer.py
+16
-16
research/neural_programmer/parameters.py
research/neural_programmer/parameters.py
+1
-1
research/neural_programmer/wiki_data.py
research/neural_programmer/wiki_data.py
+6
-4
research/object_detection/utils/visualization_utils_test.py
research/object_detection/utils/visualization_utils_test.py
+1
-1
research/real_nvp/celeba_formatting.py
research/real_nvp/celeba_formatting.py
+3
-1
research/real_nvp/imnet_formatting.py
research/real_nvp/imnet_formatting.py
+4
-2
research/real_nvp/lsun_formatting.py
research/real_nvp/lsun_formatting.py
+3
-2
No files found.
research/cognitive_mapping_and_planning/scripts/script_env_vis.py
View file @
ae0a9409
...
...
@@ -90,7 +90,7 @@ def walk_through(b):
root
=
tk
.
Tk
()
image
=
b
.
render_nodes
(
b
.
task
.
nodes
[[
current_node
],:])[
0
]
print
image
.
shape
print
(
image
.
shape
)
image
=
image
.
astype
(
np
.
uint8
)
im
=
Image
.
fromarray
(
image
)
im
=
ImageTk
.
PhotoImage
(
im
)
...
...
research/cognitive_mapping_and_planning/scripts/script_plot_trajectory.py
View file @
ae0a9409
...
...
@@ -265,7 +265,7 @@ def plot_trajectory_first_person(dt, orig_maps, out_dir):
tmp_file_name
=
'tmp.mp4'
line_ani
.
save
(
tmp_file_name
,
writer
=
writer
,
savefig_kwargs
=
{
'facecolor'
:
'black'
})
out_file_name
=
os
.
path
.
join
(
out_dir
,
'vis_{:04d}.mp4'
.
format
(
i
))
print
out_file_name
print
(
out_file_name
)
if
fu
.
exists
(
out_file_name
):
gfile
.
Remove
(
out_file_name
)
...
...
@@ -318,7 +318,7 @@ def plot_trajectory(dt, hardness, orig_maps, out_dir):
ax
.
set_ylim
([
xy1
[
1
],
xy2
[
1
]])
file_name
=
os
.
path
.
join
(
out_dir
,
'trajectory_{:04d}.png'
.
format
(
i
))
print
file_name
print
(
file_name
)
with
fu
.
fopen
(
file_name
,
'w'
)
as
f
:
plt
.
savefig
(
f
)
plt
.
close
(
fig
)
...
...
research/cognitive_mapping_and_planning/src/utils.py
View file @
ae0a9409
...
...
@@ -17,6 +17,7 @@ r"""Generaly Utilities.
"""
import
numpy
as
np
,
cPickle
,
os
,
time
from
six.moves
import
xrange
import
src.file_utils
as
fu
import
logging
...
...
@@ -93,12 +94,12 @@ def tic_toc_print(interval, string):
global
tic_toc_print_time_old
if
'tic_toc_print_time_old'
not
in
globals
():
tic_toc_print_time_old
=
time
.
time
()
print
string
print
(
string
)
else
:
new_time
=
time
.
time
()
if
new_time
-
tic_toc_print_time_old
>
interval
:
tic_toc_print_time_old
=
new_time
;
print
string
print
(
string
)
def
mkdir_if_missing
(
output_dir
):
if
not
fu
.
exists
(
output_dir
):
...
...
@@ -165,4 +166,3 @@ def calc_pr(gt, out, wt=None):
ap
=
voc_ap
(
rec
,
prec
)
return
ap
,
rec
,
prec
research/compression/entropy_coder/core/entropy_coder_single.py
View file @
ae0a9409
...
...
@@ -58,7 +58,7 @@ def main(_):
#iteration = FLAGS.iteration
if
not
tf
.
gfile
.
Exists
(
FLAGS
.
input_codes
):
print
'
\n
Input codes not found.
\n
'
print
(
'
\n
Input codes not found.
\n
'
)
return
with
tf
.
gfile
.
FastGFile
(
FLAGS
.
input_codes
,
'rb'
)
as
code_file
:
...
...
research/compression/entropy_coder/core/entropy_coder_train.py
View file @
ae0a9409
...
...
@@ -171,7 +171,7 @@ def train():
'code_length'
:
model
.
average_code_length
}
np_tensors
=
sess
.
run
(
tf_tensors
,
feed_dict
=
feed_dict
)
print
np_tensors
[
'code_length'
]
print
(
np_tensors
[
'code_length'
]
)
sv
.
Stop
()
...
...
research/differential_privacy/multiple_teachers/analysis.py
View file @
ae0a9409
...
...
@@ -41,6 +41,7 @@ python analysis.py
import
os
import
math
import
numpy
as
np
from
six.moves
import
xrange
import
tensorflow
as
tf
from
differential_privacy.multiple_teachers.input
import
maybe_download
...
...
@@ -139,7 +140,7 @@ def logmgf_exact(q, priv_eps, l):
try
:
log_t
=
math
.
log
(
t
)
except
ValueError
:
print
"Got ValueError in math.log for values :"
+
str
((
q
,
priv_eps
,
l
,
t
))
print
(
"Got ValueError in math.log for values :"
+
str
((
q
,
priv_eps
,
l
,
t
))
)
log_t
=
priv_eps
*
l
else
:
log_t
=
priv_eps
*
l
...
...
@@ -171,7 +172,7 @@ def sens_at_k(counts, noise_eps, l, k):
"""
counts_sorted
=
sorted
(
counts
,
reverse
=
True
)
if
0.5
*
noise_eps
*
l
>
1
:
print
"l too large to compute sensitivity"
print
(
"l too large to compute sensitivity"
)
return
0
# Now we can assume that at k, gap remains positive
# or we have reached the point where logmgf_exact is
...
...
@@ -268,8 +269,8 @@ def main(unused_argv):
# Solving gives eps = (alpha - ln (delta))/l
eps_list_nm
=
(
total_log_mgf_nm
-
math
.
log
(
delta
))
/
l_list
print
"Epsilons (Noisy Max): "
+
str
(
eps_list_nm
)
print
"Smoothed sensitivities (Noisy Max): "
+
str
(
total_ss_nm
/
l_list
)
print
(
"Epsilons (Noisy Max): "
+
str
(
eps_list_nm
)
)
print
(
"Smoothed sensitivities (Noisy Max): "
+
str
(
total_ss_nm
/
l_list
)
)
# If beta < eps / 2 ln (1/delta), then adding noise Lap(1) * 2 SS/eps
# is eps,delta DP
...
...
@@ -280,12 +281,12 @@ def main(unused_argv):
# Print the first one's scale
ss_eps
=
2.0
*
beta
*
math
.
log
(
1
/
delta
)
ss_scale
=
2.0
/
ss_eps
print
"To get an "
+
str
(
ss_eps
)
+
"-DP estimate of epsilon, "
print
"..add noise ~ "
+
str
(
ss_scale
)
print
"... times "
+
str
(
total_ss_nm
/
l_list
)
print
"Epsilon = "
+
str
(
min
(
eps_list_nm
))
+
"."
print
(
"To get an "
+
str
(
ss_eps
)
+
"-DP estimate of epsilon, "
)
print
(
"..add noise ~ "
+
str
(
ss_scale
)
)
print
(
"... times "
+
str
(
total_ss_nm
/
l_list
)
)
print
(
"Epsilon = "
+
str
(
min
(
eps_list_nm
))
+
"."
)
if
min
(
eps_list_nm
)
==
eps_list_nm
[
-
1
]:
print
"Warning: May not have used enough values of l"
print
(
"Warning: May not have used enough values of l"
)
# Data independent bound, as mechanism is
# 2*noise_eps DP.
...
...
@@ -294,7 +295,7 @@ def main(unused_argv):
[
logmgf_exact
(
1.0
,
2.0
*
noise_eps
,
l
)
for
l
in
l_list
])
data_ind_eps_list
=
(
data_ind_log_mgf
-
math
.
log
(
delta
))
/
l_list
print
"Data independent bound = "
+
str
(
min
(
data_ind_eps_list
))
+
"."
print
(
"Data independent bound = "
+
str
(
min
(
data_ind_eps_list
))
+
"."
)
return
...
...
research/differential_privacy/privacy_accountant/python/gaussian_moments.py
View file @
ae0a9409
...
...
@@ -40,12 +40,15 @@ To verify that the I1 >= I2 (see comments in GaussianMomentsAccountant in
accountant.py for the context), run the same loop above with verify=True
passed to compute_log_moment.
"""
from
__future__
import
print_function
import
math
import
sys
import
numpy
as
np
import
scipy.integrate
as
integrate
import
scipy.stats
from
six.moves
import
xrange
from
sympy.mpmath
import
mp
...
...
@@ -108,10 +111,10 @@ def compute_a(sigma, q, lmbd, verbose=False):
a_lambda_exact
=
((
1.0
-
q
)
*
a_lambda_first_term_exact
+
q
*
a_lambda_second_term_exact
)
if
verbose
:
print
"A: by binomial expansion {} = {} + {}"
.
format
(
print
(
"A: by binomial expansion {} = {} + {}"
.
format
(
a_lambda_exact
,
(
1.0
-
q
)
*
a_lambda_first_term_exact
,
q
*
a_lambda_second_term_exact
)
q
*
a_lambda_second_term_exact
)
)
return
_to_np_float64
(
a_lambda_exact
)
...
...
@@ -125,8 +128,8 @@ def compute_b(sigma, q, lmbd, verbose=False):
b_fn
=
lambda
z
:
(
np
.
power
(
mu0
(
z
)
/
mu
(
z
),
lmbd
)
-
np
.
power
(
mu
(
-
z
)
/
mu0
(
z
),
lmbd
))
if
verbose
:
print
"M ="
,
m
print
"f(-M) = {} f(M) = {}"
.
format
(
b_fn
(
-
m
),
b_fn
(
m
))
print
(
"M ="
,
m
)
print
(
"f(-M) = {} f(M) = {}"
.
format
(
b_fn
(
-
m
),
b_fn
(
m
))
)
assert
b_fn
(
-
m
)
<
0
and
b_fn
(
m
)
<
0
b_lambda_int1_fn
=
lambda
z
:
(
mu0
(
z
)
*
...
...
@@ -140,9 +143,9 @@ def compute_b(sigma, q, lmbd, verbose=False):
b_bound
=
a_lambda_m1
+
b_int1
-
b_int2
if
verbose
:
print
"B: by numerical integration"
,
b_lambda
print
"B must be no more than "
,
b_bound
print
b_lambda
,
b_bound
print
(
"B: by numerical integration"
,
b_lambda
)
print
(
"B must be no more than "
,
b_bound
)
print
(
b_lambda
,
b_bound
)
return
_to_np_float64
(
b_lambda
)
...
...
@@ -188,10 +191,10 @@ def compute_a_mp(sigma, q, lmbd, verbose=False):
a_lambda_second_term
=
integral_inf_mp
(
a_lambda_second_term_fn
)
if
verbose
:
print
"A: by numerical integration {} = {} + {}"
.
format
(
print
(
"A: by numerical integration {} = {} + {}"
.
format
(
a_lambda
,
(
1
-
q
)
*
a_lambda_first_term
,
q
*
a_lambda_second_term
)
q
*
a_lambda_second_term
)
)
return
_to_np_float64
(
a_lambda
)
...
...
@@ -210,8 +213,8 @@ def compute_b_mp(sigma, q, lmbd, verbose=False):
b_fn
=
lambda
z
:
((
mu0
(
z
)
/
mu
(
z
))
**
lmbd_int
-
(
mu
(
-
z
)
/
mu0
(
z
))
**
lmbd_int
)
if
verbose
:
print
"M ="
,
m
print
"f(-M) = {} f(M) = {}"
.
format
(
b_fn
(
-
m
),
b_fn
(
m
))
print
(
"M ="
,
m
)
print
(
"f(-M) = {} f(M) = {}"
.
format
(
b_fn
(
-
m
),
b_fn
(
m
))
)
assert
b_fn
(
-
m
)
<
0
and
b_fn
(
m
)
<
0
b_lambda_int1_fn
=
lambda
z
:
mu0
(
z
)
*
(
mu0
(
z
)
/
mu
(
z
))
**
lmbd_int
...
...
@@ -223,8 +226,8 @@ def compute_b_mp(sigma, q, lmbd, verbose=False):
b_bound
=
a_lambda_m1
+
b_int1
-
b_int2
if
verbose
:
print
"B by numerical integration"
,
b_lambda
print
"B must be no more than "
,
b_bound
print
(
"B by numerical integration"
,
b_lambda
)
print
(
"B must be no more than "
,
b_bound
)
assert
b_lambda
<
b_bound
+
1e-5
return
_to_np_float64
(
b_lambda
)
...
...
research/neural_gpu/neural_gpu.py
View file @
ae0a9409
...
...
@@ -17,6 +17,7 @@
import
time
import
numpy
as
np
from
six.moves
import
xrange
import
tensorflow
as
tf
from
tensorflow.python.framework
import
function
...
...
@@ -500,8 +501,10 @@ class NeuralGPU(object):
return
tf
.
reduce_sum
(
encoder_outputs
*
tf
.
expand_dims
(
mask
,
2
),
1
)
with
tf
.
variable_scope
(
"decoder"
):
def
decoder_loop_fn
(
(
state
,
prev_cell_out
,
_
)
,
(
cell_inp
,
cur_tgt
)
)
:
def
decoder_loop_fn
(
state
__
prev_cell_out
__unused
,
cell_inp
__
cur_tgt
):
"""Decoder loop function."""
state
,
prev_cell_out
,
_
=
state__prev_cell_out__unused
cell_inp
,
cur_tgt
=
cell_inp__cur_tgt
attn_q
=
tf
.
layers
.
dense
(
prev_cell_out
,
height
*
nmaps
,
name
=
"attn_query"
)
attn_res
=
attention_query
(
attn_q
,
tf
.
get_variable
(
...
...
research/neural_gpu/neural_gpu_trainer.py
View file @
ae0a9409
...
...
@@ -22,6 +22,7 @@ import threading
import
time
import
numpy
as
np
from
six.moves
import
xrange
import
tensorflow
as
tf
import
program_utils
...
...
@@ -144,7 +145,7 @@ def read_data(source_path, target_path, buckets, max_size=None, print_out=True):
while
source
and
target
and
(
not
max_size
or
counter
<
max_size
):
counter
+=
1
if
counter
%
100000
==
0
and
print_out
:
print
" reading data line %d"
%
counter
print
(
" reading data line %d"
%
counter
)
sys
.
stdout
.
flush
()
source_ids
=
[
int
(
x
)
for
x
in
source
.
split
()]
target_ids
=
[
int
(
x
)
for
x
in
target
.
split
()]
...
...
@@ -188,7 +189,7 @@ def read_data_into_global(source_path, target_path, buckets,
global_train_set
[
"wmt"
].
append
(
data_set
)
train_total_size
=
calculate_buckets_scale
(
data_set
,
buckets
,
"wmt"
)
if
print_out
:
print
" Finished global data reading (%d)."
%
train_total_size
print
(
" Finished global data reading (%d)."
%
train_total_size
)
def
initialize
(
sess
=
None
):
...
...
@@ -552,7 +553,7 @@ def score_beams_prog(beams, target, inp, history, print_out=False,
for
h
in
history
]
tgt_set
=
set
(
target
)
if
print_out
:
print
"target: "
,
tgt_prog
print
(
"target: "
,
tgt_prog
)
inps
,
tgt_outs
=
[],
[]
for
i
in
xrange
(
3
):
ilist
=
[
inp
[
i
+
1
,
l
]
for
l
in
xrange
(
inp
.
shape
[
1
])]
...
...
@@ -566,11 +567,11 @@ def score_beams_prog(beams, target, inp, history, print_out=False,
if
len
(
olist
)
==
1
:
tgt_outs
.
append
(
olist
[
0
])
else
:
print
[
program_utils
.
prog_vocab
[
x
]
for
x
in
ilist
if
x
>
0
]
print
olist
print
tgt_prog
print
program_utils
.
evaluate
(
tgt_prog
,
{
"a"
:
inps
[
-
1
]})
print
"AAAAA"
print
(
[
program_utils
.
prog_vocab
[
x
]
for
x
in
ilist
if
x
>
0
]
)
print
(
olist
)
print
(
tgt_prog
)
print
(
program_utils
.
evaluate
(
tgt_prog
,
{
"a"
:
inps
[
-
1
]})
)
print
(
"AAAAA"
)
tgt_outs
.
append
(
olist
[
0
])
if
not
test_mode
:
for
_
in
xrange
(
7
):
...
...
@@ -602,7 +603,7 @@ def score_beams_prog(beams, target, inp, history, print_out=False,
best_prog
=
b_prog
best_score
=
score
if
print_out
:
print
"best score: "
,
best_score
,
" best prog: "
,
best_prog
print
(
"best score: "
,
best_score
,
" best prog: "
,
best_prog
)
return
best
,
best_score
...
...
@@ -719,7 +720,7 @@ def train():
inp
=
new_inp
# If all results are great, stop (todo: not to wait for all?).
if
FLAGS
.
nprint
>
1
:
print
scores
print
(
scores
)
if
sum
(
scores
)
/
float
(
len
(
scores
))
>=
10.0
:
break
# The final step with the true target.
...
...
@@ -735,7 +736,7 @@ def train():
errors
,
total
,
seq_err
=
data
.
accuracy
(
inp
,
res
,
target
,
batch_size
,
0
,
new_target
,
scores
)
if
FLAGS
.
nprint
>
1
:
print
"seq_err: "
,
seq_err
print
(
"seq_err: "
,
seq_err
)
acc_total
+=
total
acc_errors
+=
errors
acc_seq_err
+=
seq_err
...
...
@@ -944,8 +945,8 @@ def interactive():
for
v
in
tf
.
trainable_variables
():
shape
=
v
.
get_shape
().
as_list
()
total
+=
mul
(
shape
)
print
(
v
.
name
,
shape
,
mul
(
shape
))
print
total
print
(
v
.
name
,
shape
,
mul
(
shape
))
print
(
total
)
# Start interactive loop.
sys
.
stdout
.
write
(
"Input to Neural GPU Translation Model.
\n
"
)
sys
.
stdout
.
write
(
"> "
)
...
...
@@ -960,7 +961,7 @@ def interactive():
normalize_digits
=
FLAGS
.
normalize_digits
)
else
:
token_ids
=
wmt
.
sentence_to_token_ids
(
inpt
,
en_vocab
)
print
[
rev_en_vocab
[
t
]
for
t
in
token_ids
]
print
(
[
rev_en_vocab
[
t
]
for
t
in
token_ids
]
)
# Which bucket does it belong to?
buckets
=
[
b
for
b
in
xrange
(
len
(
data
.
bins
))
if
data
.
bins
[
b
]
>=
max
(
len
(
token_ids
),
len
(
cures
))]
...
...
@@ -986,12 +987,12 @@ def interactive():
loss
=
loss
[
0
]
-
(
data
.
bins
[
bucket_id
]
*
FLAGS
.
length_norm
)
outputs
=
[
int
(
np
.
argmax
(
logit
,
axis
=
1
))
for
logit
in
output_logits
]
print
[
rev_fr_vocab
[
t
]
for
t
in
outputs
]
print
loss
,
data
.
bins
[
bucket_id
]
print
linearize
(
outputs
,
rev_fr_vocab
)
print
(
[
rev_fr_vocab
[
t
]
for
t
in
outputs
]
)
print
(
loss
,
data
.
bins
[
bucket_id
]
)
print
(
linearize
(
outputs
,
rev_fr_vocab
)
)
cures
.
append
(
outputs
[
gen_idx
])
print
cures
print
linearize
(
cures
,
rev_fr_vocab
)
print
(
cures
)
print
(
linearize
(
cures
,
rev_fr_vocab
)
)
if
FLAGS
.
simple_tokenizer
:
cur_out
=
outputs
if
wmt
.
EOS_ID
in
cur_out
:
...
...
@@ -1002,11 +1003,11 @@ def interactive():
if
loss
<
result_cost
:
result
=
outputs
result_cost
=
loss
print
(
"FINAL"
,
result_cost
)
print
[
rev_fr_vocab
[
t
]
for
t
in
result
]
print
linearize
(
result
,
rev_fr_vocab
)
print
(
"FINAL"
,
result_cost
)
print
(
[
rev_fr_vocab
[
t
]
for
t
in
result
]
)
print
(
linearize
(
result
,
rev_fr_vocab
)
)
else
:
print
"TOOO_LONG"
print
(
"TOOO_LONG"
)
sys
.
stdout
.
write
(
"> "
)
sys
.
stdout
.
flush
()
inpt
=
sys
.
stdin
.
readline
(),
""
...
...
research/neural_gpu/program_utils.py
View file @
ae0a9409
...
...
@@ -177,7 +177,7 @@ def evaluate(program_str, input_names_to_vals, default="ERROR"):
with
stdoutIO
()
as
s
:
# pylint: disable=bare-except
try
:
exec
exec_str
+
" print(out)"
exec
(
exec_str
+
" print(out)"
)
return
s
.
getvalue
()[:
-
1
]
except
:
return
default
...
...
@@ -290,7 +290,7 @@ class Program(object):
with
stdoutIO
()
as
s
:
# pylint: disable=exec-used
exec
inp_str
+
self
.
body
+
"; print(out)"
exec
(
inp_str
+
self
.
body
+
"; print(out)"
)
# pylint: enable=exec-used
return
s
.
getvalue
()[:
-
1
]
...
...
@@ -412,11 +412,11 @@ def gen(max_len, how_many):
else
:
outcomes_to_programs
[
outcome_str
]
=
t
.
flat_str
()
if
counter
%
5000
==
0
:
print
"== proggen: tried: "
+
str
(
counter
)
print
"== proggen: kept: "
+
str
(
len
(
outcomes_to_programs
))
print
(
"== proggen: tried: "
+
str
(
counter
)
)
print
(
"== proggen: kept: "
+
str
(
len
(
outcomes_to_programs
))
)
if
counter
%
250000
==
0
and
save_prefix
is
not
None
:
print
"saving..."
print
(
"saving..."
)
save_counter
=
0
progfilename
=
os
.
path
.
join
(
save_prefix
,
"prog_"
+
str
(
counter
)
+
".txt"
)
iofilename
=
os
.
path
.
join
(
save_prefix
,
"io_"
+
str
(
counter
)
+
".txt"
)
...
...
@@ -431,7 +431,7 @@ def gen(max_len, how_many):
for
(
o
,
p
)
in
outcomes_to_programs
.
iteritems
():
save_counter
+=
1
if
save_counter
%
500
==
0
:
print
"saving %d of %d"
%
(
save_counter
,
len
(
outcomes_to_programs
))
print
(
"saving %d of %d"
%
(
save_counter
,
len
(
outcomes_to_programs
))
)
fp
.
write
(
p
+
"
\n
"
)
fi
.
write
(
o
+
"
\n
"
)
ftp
.
write
(
str
(
tokenize
(
p
,
tokens
))
+
"
\n
"
)
...
...
research/neural_gpu/wmt_utils.py
View file @
ae0a9409
...
...
@@ -14,6 +14,8 @@
# ==============================================================================
"""Utilities for downloading data from WMT, tokenizing, vocabularies."""
from
__future__
import
print_function
import
gzip
import
os
import
re
...
...
@@ -53,20 +55,20 @@ _WMT_ENFR_DEV_URL = "http://www.statmt.org/wmt15/dev-v2.tgz"
def
maybe_download
(
directory
,
filename
,
url
):
"""Download filename from url unless it's already in directory."""
if
not
tf
.
gfile
.
Exists
(
directory
):
print
"Creating directory %s"
%
directory
print
(
"Creating directory %s"
%
directory
)
os
.
mkdir
(
directory
)
filepath
=
os
.
path
.
join
(
directory
,
filename
)
if
not
tf
.
gfile
.
Exists
(
filepath
):
print
"Downloading %s to %s"
%
(
url
,
filepath
)
print
(
"Downloading %s to %s"
%
(
url
,
filepath
)
)
filepath
,
_
=
urllib
.
request
.
urlretrieve
(
url
,
filepath
)
statinfo
=
os
.
stat
(
filepath
)
print
"Successfully downloaded"
,
filename
,
statinfo
.
st_size
,
"bytes"
print
(
"Successfully downloaded"
,
filename
,
statinfo
.
st_size
,
"bytes"
)
return
filepath
def
gunzip_file
(
gz_path
,
new_path
):
"""Unzips from gz_path into new_path."""
print
"Unpacking %s to %s"
%
(
gz_path
,
new_path
)
print
(
"Unpacking %s to %s"
%
(
gz_path
,
new_path
)
)
with
gzip
.
open
(
gz_path
,
"rb"
)
as
gz_file
:
with
open
(
new_path
,
"wb"
)
as
new_file
:
for
line
in
gz_file
:
...
...
@@ -80,7 +82,7 @@ def get_wmt_enfr_train_set(directory):
tf
.
gfile
.
Exists
(
train_path
+
".en"
)):
corpus_file
=
maybe_download
(
directory
,
"training-giga-fren.tar"
,
_WMT_ENFR_TRAIN_URL
)
print
"Extracting tar file %s"
%
corpus_file
print
(
"Extracting tar file %s"
%
corpus_file
)
with
tarfile
.
open
(
corpus_file
,
"r"
)
as
corpus_tar
:
corpus_tar
.
extractall
(
directory
)
gunzip_file
(
train_path
+
".fr.gz"
,
train_path
+
".fr"
)
...
...
@@ -95,7 +97,7 @@ def get_wmt_enfr_dev_set(directory):
if
not
(
tf
.
gfile
.
Exists
(
dev_path
+
".fr"
)
and
tf
.
gfile
.
Exists
(
dev_path
+
".en"
)):
dev_file
=
maybe_download
(
directory
,
"dev-v2.tgz"
,
_WMT_ENFR_DEV_URL
)
print
"Extracting tgz file %s"
%
dev_file
print
(
"Extracting tgz file %s"
%
dev_file
)
with
tarfile
.
open
(
dev_file
,
"r:gz"
)
as
dev_tar
:
fr_dev_file
=
dev_tar
.
getmember
(
"dev/"
+
dev_name
+
".fr"
)
en_dev_file
=
dev_tar
.
getmember
(
"dev/"
+
dev_name
+
".en"
)
...
...
@@ -206,7 +208,7 @@ def create_vocabulary(vocabulary_path, data_path, max_vocabulary_size,
normalize_digits: Boolean; if true, all digits are replaced by 0s.
"""
if
not
tf
.
gfile
.
Exists
(
vocabulary_path
):
print
"Creating vocabulary %s from data %s"
%
(
vocabulary_path
,
data_path
)
print
(
"Creating vocabulary %s from data %s"
%
(
vocabulary_path
,
data_path
)
)
vocab
,
chars
=
{},
{}
for
c
in
_PUNCTUATION
:
chars
[
c
]
=
1
...
...
@@ -218,7 +220,7 @@ def create_vocabulary(vocabulary_path, data_path, max_vocabulary_size,
line
=
" "
.
join
(
line_in
.
split
())
counter
+=
1
if
counter
%
100000
==
0
:
print
" processing fr line %d"
%
counter
print
(
" processing fr line %d"
%
counter
)
for
c
in
line
:
if
c
in
chars
:
chars
[
c
]
+=
1
...
...
@@ -240,7 +242,7 @@ def create_vocabulary(vocabulary_path, data_path, max_vocabulary_size,
line
=
" "
.
join
(
line_in
.
split
())
counter
+=
1
if
counter
%
100000
==
0
:
print
" processing en line %d"
%
counter
print
(
" processing en line %d"
%
counter
)
for
c
in
line
:
if
c
in
chars
:
chars
[
c
]
+=
1
...
...
@@ -371,7 +373,7 @@ def data_to_token_ids(data_path, target_path, vocabulary_path,
normalize_digits: Boolean; if true, all digits are replaced by 0s.
"""
if
not
tf
.
gfile
.
Exists
(
target_path
):
print
"Tokenizing data in %s"
%
data_path
print
(
"Tokenizing data in %s"
%
data_path
)
vocab
,
_
=
initialize_vocabulary
(
vocabulary_path
)
with
tf
.
gfile
.
GFile
(
data_path
,
mode
=
"rb"
)
as
data_file
:
with
tf
.
gfile
.
GFile
(
target_path
,
mode
=
"w"
)
as
tokens_file
:
...
...
@@ -379,7 +381,7 @@ def data_to_token_ids(data_path, target_path, vocabulary_path,
for
line
in
data_file
:
counter
+=
1
if
counter
%
100000
==
0
:
print
" tokenizing line %d"
%
counter
print
(
" tokenizing line %d"
%
counter
)
token_ids
=
sentence_to_token_ids
(
line
,
vocab
,
tokenizer
,
normalize_digits
)
tokens_file
.
write
(
" "
.
join
([
str
(
tok
)
for
tok
in
token_ids
])
+
"
\n
"
)
...
...
research/neural_programmer/data_utils.py
View file @
ae0a9409
...
...
@@ -15,6 +15,8 @@
"""Functions for constructing vocabulary, converting the examples to integer format and building the required masks for batch computation Author: aneelakantan (Arvind Neelakantan)
"""
from
__future__
import
print_function
import
copy
import
numbers
import
numpy
as
np
...
...
@@ -536,15 +538,15 @@ def add_special_words(utility):
utility
.
reverse_word_ids
[
utility
.
word_ids
[
utility
.
entry_match_token
]]
=
utility
.
entry_match_token
utility
.
entry_match_token_id
=
utility
.
word_ids
[
utility
.
entry_match_token
]
print
"entry match token: "
,
utility
.
word_ids
[
utility
.
entry_match_token
],
utility
.
entry_match_token_id
print
(
"entry match token: "
,
utility
.
word_ids
[
utility
.
entry_match_token
],
utility
.
entry_match_token_id
)
utility
.
words
.
append
(
utility
.
column_match_token
)
utility
.
word_ids
[
utility
.
column_match_token
]
=
len
(
utility
.
word_ids
)
utility
.
reverse_word_ids
[
utility
.
word_ids
[
utility
.
column_match_token
]]
=
utility
.
column_match_token
utility
.
column_match_token_id
=
utility
.
word_ids
[
utility
.
column_match_token
]
print
"entry match token: "
,
utility
.
word_ids
[
utility
.
column_match_token
],
utility
.
column_match_token_id
print
(
"entry match token: "
,
utility
.
word_ids
[
utility
.
column_match_token
],
utility
.
column_match_token_id
)
utility
.
words
.
append
(
utility
.
dummy_token
)
utility
.
word_ids
[
utility
.
dummy_token
]
=
len
(
utility
.
word_ids
)
utility
.
reverse_word_ids
[
utility
.
word_ids
[
...
...
research/neural_programmer/model.py
View file @
ae0a9409
...
...
@@ -15,6 +15,8 @@
"""Author: aneelakantan (Arvind Neelakantan)
"""
from
__future__
import
print_function
import
numpy
as
np
import
tensorflow
as
tf
import
nn_utils
...
...
@@ -545,7 +547,7 @@ class Graph():
self
.
batch_log_prob
=
tf
.
zeros
([
self
.
batch_size
],
dtype
=
self
.
data_type
)
#Perform max_passes and at each pass select operation and column
for
curr_pass
in
range
(
max_passes
):
print
"step: "
,
curr_pass
print
(
"step: "
,
curr_pass
)
output
,
select
,
softmax
,
soft_softmax
,
column_softmax
,
soft_column_softmax
=
self
.
one_pass
(
select
,
question_embedding
,
hidden_vectors
,
hprev
,
prev_select_1
,
curr_pass
)
...
...
@@ -636,7 +638,7 @@ class Graph():
self
.
total_cost
=
self
.
compute_error
()
optimize_params
=
self
.
params
.
values
()
optimize_names
=
self
.
params
.
keys
()
print
"optimize params "
,
optimize_names
print
(
"optimize params "
,
optimize_names
)
if
(
self
.
utility
.
FLAGS
.
l2_regularizer
>
0.0
):
reg_cost
=
0.0
for
ind_param
in
self
.
params
.
keys
():
...
...
@@ -645,7 +647,7 @@ class Graph():
grads
=
tf
.
gradients
(
self
.
total_cost
,
optimize_params
,
name
=
"gradients"
)
grad_norm
=
0.0
for
p
,
name
in
zip
(
grads
,
optimize_names
):
print
"grads: "
,
p
,
name
print
(
"grads: "
,
p
,
name
)
if
isinstance
(
p
,
tf
.
IndexedSlices
):
grad_norm
+=
tf
.
reduce_sum
(
p
.
values
*
p
.
values
)
elif
not
(
p
==
None
):
...
...
@@ -675,4 +677,3 @@ class Graph():
self
.
step
=
adam
.
apply_gradients
(
zip
(
grads
,
optimize_params
),
global_step
=
self
.
global_step
)
self
.
init_op
=
tf
.
global_variables_initializer
()
research/neural_programmer/neural_programmer.py
View file @
ae0a9409
...
...
@@ -113,9 +113,9 @@ def evaluate(sess, data, batch_size, graph, i):
graph
))
gc
+=
ct
*
batch_size
num_examples
+=
batch_size
print
"dev set accuracy after "
,
i
,
" : "
,
gc
/
num_examples
print
num_examples
,
len
(
data
)
print
"--------"
print
(
"dev set accuracy after "
,
i
,
" : "
,
gc
/
num_examples
)
print
(
num_examples
,
len
(
data
)
)
print
(
"--------"
)
def
Train
(
graph
,
utility
,
batch_size
,
train_data
,
sess
,
model_dir
,
...
...
@@ -142,9 +142,9 @@ def Train(graph, utility, batch_size, train_data, sess, model_dir,
if
(
i
>
0
and
i
%
FLAGS
.
eval_cycle
==
0
):
end
=
time
.
time
()
time_taken
=
end
-
start
print
"step "
,
i
,
" "
,
time_taken
,
" seconds "
print
(
"step "
,
i
,
" "
,
time_taken
,
" seconds "
)
start
=
end
print
" printing train set loss: "
,
train_set_loss
/
utility
.
FLAGS
.
eval_cycle
print
(
" printing train set loss: "
,
train_set_loss
/
utility
.
FLAGS
.
eval_cycle
)
train_set_loss
=
0.0
...
...
@@ -183,23 +183,23 @@ def master(train_data, dev_data, utility):
file_list
=
sorted
(
selected_models
.
items
(),
key
=
lambda
x
:
x
[
0
])
if
(
len
(
file_list
)
>
0
):
file_list
=
file_list
[
0
:
len
(
file_list
)
-
1
]
print
"list of models: "
,
file_list
print
(
"list of models: "
,
file_list
)
for
model_file
in
file_list
:
model_file
=
model_file
[
1
]
print
"restoring: "
,
model_file
print
(
"restoring: "
,
model_file
)
saver
.
restore
(
sess
,
model_dir
+
"/"
+
model_file
)
model_step
=
int
(
model_file
.
split
(
"_"
)[
len
(
model_file
.
split
(
"_"
))
-
1
])
print
"evaluating on dev "
,
model_file
,
model_step
print
(
"evaluating on dev "
,
model_file
,
model_step
)
evaluate
(
sess
,
dev_data
,
batch_size
,
graph
,
model_step
)
else
:
ckpt
=
tf
.
train
.
get_checkpoint_state
(
model_dir
)
print
"model dir: "
,
model_dir
print
(
"model dir: "
,
model_dir
)
if
(
not
(
tf
.
gfile
.
IsDirectory
(
utility
.
FLAGS
.
output_dir
))):
print
"create dir: "
,
utility
.
FLAGS
.
output_dir
print
(
"create dir: "
,
utility
.
FLAGS
.
output_dir
)
tf
.
gfile
.
MkDir
(
utility
.
FLAGS
.
output_dir
)
if
(
not
(
tf
.
gfile
.
IsDirectory
(
model_dir
))):
print
"create dir: "
,
model_dir
print
(
"create dir: "
,
model_dir
)
tf
.
gfile
.
MkDir
(
model_dir
)
Train
(
graph
,
utility
,
batch_size
,
train_data
,
sess
,
model_dir
,
saver
)
...
...
@@ -225,10 +225,10 @@ def main(args):
train_data
=
data_utils
.
complete_wiki_processing
(
train_data
,
utility
,
True
)
dev_data
=
data_utils
.
complete_wiki_processing
(
dev_data
,
utility
,
False
)
test_data
=
data_utils
.
complete_wiki_processing
(
test_data
,
utility
,
False
)
print
"# train examples "
,
len
(
train_data
)
print
"# dev examples "
,
len
(
dev_data
)
print
"# test examples "
,
len
(
test_data
)
print
"running open source"
print
(
"# train examples "
,
len
(
train_data
)
)
print
(
"# dev examples "
,
len
(
dev_data
)
)
print
(
"# test examples "
,
len
(
test_data
)
)
print
(
"running open source"
)
#construct TF graph and train or evaluate
master
(
train_data
,
dev_data
,
utility
)
...
...
research/neural_programmer/parameters.py
View file @
ae0a9409
...
...
@@ -59,7 +59,7 @@ class Parameters:
#Biases for the gates and cell
for
bias
in
[
"i"
,
"f"
,
"c"
,
"o"
]:
if
(
bias
==
"f"
):
print
"forget gate bias"
print
(
"forget gate bias"
)
params
[
key
+
"_"
+
bias
]
=
tf
.
Variable
(
tf
.
random_uniform
([
embedding_dims
],
1.0
,
1.1
,
self
.
utility
.
tf_data_type
[
self
.
utility
.
FLAGS
.
data_type
]))
...
...
research/neural_programmer/wiki_data.py
View file @
ae0a9409
...
...
@@ -22,6 +22,8 @@ columns.
lookup answer (or matrix) is also split into number and word lookup matrix
Author: aneelakantan (Arvind Neelakantan)
"""
from
__future__
import
print_function
import
math
import
os
import
re
...
...
@@ -56,7 +58,7 @@ def correct_unicode(string):
#string = re.sub("[“â€Â«Â»]", "\"", string)
#string = re.sub("[•†‡]", "", string)
#string = re.sub("[â€â€‘–—]", "-", string)
string
=
re
.
sub
(
u
r
'[\u2E00-\uFFFF]'
,
""
,
string
)
string
=
re
.
sub
(
r
'[\u2E00-\uFFFF]'
,
""
,
string
)
string
=
re
.
sub
(
"
\\
s+"
,
" "
,
string
).
strip
()
return
string
...
...
@@ -78,7 +80,7 @@ def full_normalize(string):
# Remove trailing info in brackets
string
=
re
.
sub
(
"\[[^\]]*\]"
,
""
,
string
)
# Remove most unicode characters in other languages
string
=
re
.
sub
(
u
r
'[\u007F-\uFFFF]'
,
""
,
string
.
strip
())
string
=
re
.
sub
(
r
'[\u007F-\uFFFF]'
,
""
,
string
.
strip
())
# Remove trailing info in parenthesis
string
=
re
.
sub
(
"\([^)]*\)$"
,
""
,
string
.
strip
())
string
=
final_normalize
(
string
)
...
...
@@ -298,7 +300,7 @@ class WikiQuestionGenerator(object):
question_id
,
question
,
target_canon
,
context
)
self
.
annotated_tables
[
context
]
=
[]
counter
+=
1
print
"Annotated examples loaded "
,
len
(
self
.
annotated_examples
)
print
(
"Annotated examples loaded "
,
len
(
self
.
annotated_examples
)
)
f
.
close
()
def
is_number_column
(
self
,
a
):
...
...
research/object_detection/utils/visualization_utils_test.py
View file @
ae0a9409
...
...
@@ -145,7 +145,7 @@ class VisualizationUtilsTest(tf.test.TestCase):
for
i
in
range
(
images_with_boxes_np
.
shape
[
0
]):
img_name
=
'image_'
+
str
(
i
)
+
'.png'
output_file
=
os
.
path
.
join
(
self
.
get_temp_dir
(),
img_name
)
print
'Writing output image %d to %s'
%
(
i
,
output_file
)
print
(
'Writing output image %d to %s'
%
(
i
,
output_file
)
)
image_pil
=
Image
.
fromarray
(
images_with_boxes_np
[
i
,
...])
image_pil
.
save
(
output_file
)
...
...
research/real_nvp/celeba_formatting.py
View file @
ae0a9409
...
...
@@ -30,6 +30,8 @@ python celeba_formatting.py \
"""
from
__future__
import
print_function
import
os
import
os.path
...
...
@@ -70,7 +72,7 @@ def main():
writer
=
tf
.
python_io
.
TFRecordWriter
(
file_out
)
for
example_idx
,
img_fn
in
enumerate
(
img_fn_list
):
if
example_idx
%
1000
==
0
:
print
example_idx
,
"/"
,
num_examples
print
(
example_idx
,
"/"
,
num_examples
)
image_raw
=
scipy
.
ndimage
.
imread
(
os
.
path
.
join
(
fn_root
,
img_fn
))
rows
=
image_raw
.
shape
[
0
]
cols
=
image_raw
.
shape
[
1
]
...
...
research/real_nvp/imnet_formatting.py
View file @
ae0a9409
...
...
@@ -34,6 +34,8 @@ done
"""
from
__future__
import
print_function
import
os
import
os.path
...
...
@@ -73,10 +75,10 @@ def main():
file_out
=
"%s_%05d.tfrecords"
file_out
=
file_out
%
(
FLAGS
.
file_out
,
example_idx
//
n_examples_per_file
)
print
"Writing on:"
,
file_out
print
(
"Writing on:"
,
file_out
)
writer
=
tf
.
python_io
.
TFRecordWriter
(
file_out
)
if
example_idx
%
1000
==
0
:
print
example_idx
,
"/"
,
num_examples
print
(
example_idx
,
"/"
,
num_examples
)
image_raw
=
scipy
.
ndimage
.
imread
(
os
.
path
.
join
(
fn_root
,
img_fn
))
rows
=
image_raw
.
shape
[
0
]
cols
=
image_raw
.
shape
[
1
]
...
...
research/real_nvp/lsun_formatting.py
View file @
ae0a9409
...
...
@@ -29,6 +29,7 @@ python lsun_formatting.py \
--fn_root [LSUN_FOLDER]
"""
from
__future__
import
print_function
import
os
import
os.path
...
...
@@ -68,10 +69,10 @@ def main():
file_out
=
"%s_%05d.tfrecords"
file_out
=
file_out
%
(
FLAGS
.
file_out
,
example_idx
//
n_examples_per_file
)
print
"Writing on:"
,
file_out
print
(
"Writing on:"
,
file_out
)
writer
=
tf
.
python_io
.
TFRecordWriter
(
file_out
)
if
example_idx
%
1000
==
0
:
print
example_idx
,
"/"
,
num_examples
print
(
example_idx
,
"/"
,
num_examples
)
image_raw
=
numpy
.
array
(
Image
.
open
(
os
.
path
.
join
(
fn_root
,
img_fn
)))
rows
=
image_raw
.
shape
[
0
]
cols
=
image_raw
.
shape
[
1
]
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment