Commit a894b6e8 authored by Martin Wicke's avatar Martin Wicke
Browse files

Merge pull request #1 from snurkabill/autoencoders

initial commit, simple, separated models
parents d6359be1 70702f79
autoencoder/MNIST_data/*
*.pyc
Very simple implementations of some autoencoder variations
import numpy as np
import sklearn.preprocessing as prep
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from autoencoder.autoencoder_models.DenoisingAutoencoder import AdditiveGaussianNoiseAutoencoder
mnist = input_data.read_data_sets('MNIST_data', one_hot = True)
def standard_scale(X_train, X_test):
preprocessor = prep.StandardScaler().fit(X_train)
X_train = preprocessor.transform(X_train)
X_test = preprocessor.transform(X_test)
return X_train, X_test
def get_random_block_from_data(data, batch_size):
start_index = np.random.randint(0, len(data) - batch_size)
return data[start_index:(start_index + batch_size)]
X_train, X_test = standard_scale(mnist.train.images, mnist.test.images)
n_samples = int(mnist.train.num_examples)
training_epochs = 20
batch_size = 128
display_step = 1
autoencoder = AdditiveGaussianNoiseAutoencoder(n_input = 784,
n_hidden = 200,
transfer_function = tf.nn.softplus,
optimizer = tf.train.AdamOptimizer(learning_rate = 0.001),
scale = 0.01)
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(n_samples / batch_size)
# Loop over all batches
for i in range(total_batch):
batch_xs = get_random_block_from_data(X_train, batch_size)
# Fit training using batch data
cost = autoencoder.partial_fit(batch_xs)
# Compute average loss
avg_cost += cost / n_samples * batch_size
# Display logs per epoch step
if epoch % display_step == 0:
print "Epoch:", '%04d' % (epoch + 1), \
"cost=", "{:.9f}".format(avg_cost)
print "Total cost: " + str(autoencoder.calc_total_cost(X_test))
import numpy as np
import sklearn.preprocessing as prep
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from autoencoder.autoencoder_models.Autoencoder import Autoencoder
mnist = input_data.read_data_sets('MNIST_data', one_hot = True)
def standard_scale(X_train, X_test):
preprocessor = prep.StandardScaler().fit(X_train)
X_train = preprocessor.transform(X_train)
X_test = preprocessor.transform(X_test)
return X_train, X_test
def get_random_block_from_data(data, batch_size):
start_index = np.random.randint(0, len(data) - batch_size)
return data[start_index:(start_index + batch_size)]
X_train, X_test = standard_scale(mnist.train.images, mnist.test.images)
n_samples = int(mnist.train.num_examples)
training_epochs = 20
batch_size = 128
display_step = 1
autoencoder = Autoencoder(n_input = 784,
n_hidden = 200,
transfer_function = tf.nn.softplus,
optimizer = tf.train.AdamOptimizer(learning_rate = 0.001))
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(n_samples / batch_size)
# Loop over all batches
for i in range(total_batch):
batch_xs = get_random_block_from_data(X_train, batch_size)
# Fit training using batch data
cost = autoencoder.partial_fit(batch_xs)
# Compute average loss
avg_cost += cost / n_samples * batch_size
# Display logs per epoch step
if epoch % display_step == 0:
print "Epoch:", '%04d' % (epoch + 1), \
"cost=", "{:.9f}".format(avg_cost)
print "Total cost: " + str(autoencoder.calc_total_cost(X_test))
import numpy as np
import sklearn.preprocessing as prep
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from autoencoder.autoencoder_models.DenoisingAutoencoder import MaskingNoiseAutoencoder
mnist = input_data.read_data_sets('MNIST_data', one_hot = True)
def standard_scale(X_train, X_test):
preprocessor = prep.StandardScaler().fit(X_train)
X_train = preprocessor.transform(X_train)
X_test = preprocessor.transform(X_test)
return X_train, X_test
def get_random_block_from_data(data, batch_size):
start_index = np.random.randint(0, len(data) - batch_size)
return data[start_index:(start_index + batch_size)]
X_train, X_test = standard_scale(mnist.train.images, mnist.test.images)
n_samples = int(mnist.train.num_examples)
training_epochs = 100
batch_size = 128
display_step = 1
autoencoder = MaskingNoiseAutoencoder(n_input = 784,
n_hidden = 200,
transfer_function = tf.nn.softplus,
optimizer = tf.train.AdamOptimizer(learning_rate = 0.001),
dropout_probability = 0.95)
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(n_samples / batch_size)
for i in range(total_batch):
batch_xs = get_random_block_from_data(X_train, batch_size)
cost = autoencoder.partial_fit(batch_xs)
avg_cost += cost / n_samples * batch_size
if epoch % display_step == 0:
print "Epoch:", '%04d' % (epoch + 1), \
"cost=", "{:.9f}".format(avg_cost)
print "Total cost: " + str(autoencoder.calc_total_cost(X_test))
import numpy as np
import tensorflow as tf
def xavier_init(fan_in, fan_out, constant = 1):
low = -constant * np.sqrt(6.0 / (fan_in + fan_out))
high = constant * np.sqrt(6.0 / (fan_in + fan_out))
return tf.random_uniform((fan_in, fan_out),
minval = low, maxval = high,
dtype = tf.float32)
import numpy as np
import sklearn.preprocessing as prep
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from autoencoder.autoencoder_models.VariationalAutoencoder import VariationalAutoencoder
mnist = input_data.read_data_sets('MNIST_data', one_hot = True)
def standard_scale(X_train, X_test):
preprocessor = prep.StandardScaler().fit(X_train)
X_train = preprocessor.transform(X_train)
X_test = preprocessor.transform(X_test)
return X_train, X_test
def get_random_block_from_data(data, batch_size):
start_index = np.random.randint(0, len(data) - batch_size)
return data[start_index:(start_index + batch_size)]
X_train, X_test = standard_scale(mnist.train.images, mnist.test.images)
n_samples = int(mnist.train.num_examples)
training_epochs = 20
batch_size = 128
display_step = 1
autoencoder = VariationalAutoencoder(n_input = 784,
n_hidden = 200,
optimizer = tf.train.AdamOptimizer(learning_rate = 0.001),
gaussian_sample_size = 128)
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(n_samples / batch_size)
# Loop over all batches
for i in range(total_batch):
batch_xs = get_random_block_from_data(X_train, batch_size)
# Fit training using batch data
cost = autoencoder.partial_fit(batch_xs)
# Compute average loss
avg_cost += cost / n_samples * batch_size
# Display logs per epoch step
if epoch % display_step == 0:
print "Epoch:", '%04d' % (epoch + 1), \
"cost=", "{:.9f}".format(avg_cost)
print "Total cost: " + str(autoencoder.calc_total_cost(X_test))
import tensorflow as tf
import numpy as np
import autoencoder.Utils
class Autoencoder(object):
def __init__(self, n_input, n_hidden, transfer_function=tf.nn.softplus, optimizer = tf.train.AdamOptimizer()):
self.n_input = n_input
self.n_hidden = n_hidden
self.transfer = transfer_function
network_weights = self._initialize_weights()
self.weights = network_weights
# model
self.x = tf.placeholder(tf.float32, [None, self.n_input])
self.hidden = self.transfer(tf.add(tf.matmul(self.x, self.weights['w1']), self.weights['b1']))
self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2'])
# cost
self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.sub(self.reconstruction, self.x), 2.0))
self.optimizer = optimizer.minimize(self.cost)
init = tf.initialize_all_variables()
self.sess = tf.Session()
self.sess.run(init)
def _initialize_weights(self):
all_weights = dict()
all_weights['w1'] = tf.Variable(autoencoder.Utils.xavier_init(self.n_input, self.n_hidden))
all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32))
all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input], dtype=tf.float32))
all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype=tf.float32))
return all_weights
def partial_fit(self, X):
cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict={self.x: X})
return cost
def calc_total_cost(self, X):
return self.sess.run(self.cost, feed_dict = {self.x: X})
def transform(self, X):
return self.sess.run(self.hidden, feed_dict={self.x: X})
def generate(self, hidden = None):
if hidden is None:
hidden = np.random.normal(size=self.weights["b1"])
return self.sess.run(self.reconstruction, feed_dict={self.hidden: hidden})
def reconstruct(self, X):
return self.sess.run(self.reconstruction, feed_dict={self.x: X})
def getWeights(self):
return self.sess.run(self.weights['w1'])
def getBiases(self):
return self.sess.run(self.weights['b1'])
import tensorflow as tf
import numpy as np
import autoencoder.Utils
class AdditiveGaussianNoiseAutoencoder(object):
def __init__(self, n_input, n_hidden, transfer_function = tf.nn.softplus, optimizer = tf.train.AdamOptimizer(),
scale = 0.1):
self.n_input = n_input
self.n_hidden = n_hidden
self.transfer = transfer_function
self.scale = tf.placeholder(tf.float32)
self.training_scale = scale
network_weights = self._initialize_weights()
self.weights = network_weights
# model
self.x = tf.placeholder(tf.float32, [None, self.n_input])
self.hidden = self.transfer(tf.add(tf.matmul(self.x + scale * tf.random_normal((n_input,)),
self.weights['w1']),
self.weights['b1']))
self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2'])
# cost
self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.sub(self.reconstruction, self.x), 2.0))
self.optimizer = optimizer.minimize(self.cost)
init = tf.initialize_all_variables()
self.sess = tf.Session()
self.sess.run(init)
def _initialize_weights(self):
all_weights = dict()
all_weights['w1'] = tf.Variable(autoencoder.Utils.xavier_init(self.n_input, self.n_hidden))
all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype = tf.float32))
all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input], dtype = tf.float32))
all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype = tf.float32))
return all_weights
def partial_fit(self, X):
cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict = {self.x: X,
self.scale: self.training_scale
})
return cost
def calc_total_cost(self, X):
return self.sess.run(self.cost, feed_dict = {self.x: X,
self.scale: self.training_scale
})
def transform(self, X):
return self.sess.run(self.hidden, feed_dict = {self.x: X,
self.scale: self.training_scale
})
def generate(self, hidden = None):
if hidden is None:
hidden = np.random.normal(size = self.weights["b1"])
return self.sess.run(self.reconstruction, feed_dict = {self.hidden: hidden})
def reconstruct(self, X):
return self.sess.run(self.reconstruction, feed_dict = {self.x: X,
self.scale: self.training_scale
})
def getWeights(self):
return self.sess.run(self.weights['w1'])
def getBiases(self):
return self.sess.run(self.weights['b1'])
class MaskingNoiseAutoencoder(object):
def __init__(self, n_input, n_hidden, transfer_function = tf.nn.softplus, optimizer = tf.train.AdamOptimizer(),
dropout_probability = 0.95):
self.n_input = n_input
self.n_hidden = n_hidden
self.transfer = transfer_function
self.dropout_probability = dropout_probability
self.keep_prob = tf.placeholder(tf.float32)
network_weights = self._initialize_weights()
self.weights = network_weights
# model
self.x = tf.placeholder(tf.float32, [None, self.n_input])
self.hidden = self.transfer(tf.add(tf.matmul(tf.nn.dropout(self.x, self.keep_prob), self.weights['w1']),
self.weights['b1']))
self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2'])
# cost
self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.sub(self.reconstruction, self.x), 2.0))
self.optimizer = optimizer.minimize(self.cost)
init = tf.initialize_all_variables()
self.sess = tf.Session()
self.sess.run(init)
def _initialize_weights(self):
all_weights = dict()
all_weights['w1'] = tf.Variable(autoencoder.Utils.xavier_init(self.n_input, self.n_hidden))
all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype = tf.float32))
all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input], dtype = tf.float32))
all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype = tf.float32))
return all_weights
def partial_fit(self, X):
cost, opt = self.sess.run((self.cost, self.optimizer),
feed_dict = {self.x: X, self.keep_prob: self.dropout_probability})
return cost
def calc_total_cost(self, X):
return self.sess.run(self.cost, feed_dict = {self.x: X, self.keep_prob: 1.0})
def transform(self, X):
return self.sess.run(self.hidden, feed_dict = {self.x: X, self.keep_prob: 1.0})
def generate(self, hidden = None):
if hidden is None:
hidden = np.random.normal(size = self.weights["b1"])
return self.sess.run(self.reconstruction, feed_dict = {self.hidden: hidden})
def reconstruct(self, X):
return self.sess.run(self.reconstruction, feed_dict = {self.x: X, self.keep_prob: 1.0})
def getWeights(self):
return self.sess.run(self.weights['w1'])
def getBiases(self):
return self.sess.run(self.weights['b1'])
import tensorflow as tf
import numpy as np
import autoencoder.Utils
class VariationalAutoencoder(object):
def __init__(self, n_input, n_hidden, optimizer = tf.train.AdamOptimizer(),
gaussian_sample_size = 128):
self.n_input = n_input
self.n_hidden = n_hidden
self.gaussian_sample_size = gaussian_sample_size
network_weights = self._initialize_weights()
self.weights = network_weights
# model
self.x = tf.placeholder(tf.float32, [None, self.n_input])
self.z_mean = tf.add(tf.matmul(self.x, self.weights['w1']), self.weights['b1'])
self.z_log_sigma_sq = tf.add(tf.matmul(self.x, self.weights['log_sigma_w1']), self.weights['log_sigma_b1'])
# sample from gaussian distribution
eps = tf.random_normal((self.gaussian_sample_size, n_hidden), 0, 1, dtype = tf.float32)
self.z = tf.add(self.z_mean, tf.mul(tf.sqrt(tf.exp(self.z_log_sigma_sq)), eps))
self.reconstruction = tf.add(tf.matmul(self.z, self.weights['w2']), self.weights['b2'])
# cost
reconstr_loss = 0.5 * tf.reduce_sum(tf.pow(tf.sub(self.reconstruction, self.x), 2.0))
latent_loss = -0.5 * tf.reduce_sum(1 + self.z_log_sigma_sq
- tf.square(self.z_mean)
- tf.exp(self.z_log_sigma_sq), 1)
self.cost = tf.reduce_mean(reconstr_loss + latent_loss)
self.optimizer = optimizer.minimize(self.cost)
init = tf.initialize_all_variables()
self.sess = tf.Session()
self.sess.run(init)
def _initialize_weights(self):
all_weights = dict()
all_weights['w1'] = tf.Variable(autoencoder.Utils.xavier_init(self.n_input, self.n_hidden))
all_weights['log_sigma_w1'] = tf.Variable(autoencoder.Utils.xavier_init(self.n_input, self.n_hidden))
all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32))
all_weights['log_sigma_b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32))
all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input], dtype=tf.float32))
all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype=tf.float32))
return all_weights
def partial_fit(self, X):
cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict={self.x: X})
return cost
def calc_total_cost(self, X):
return self.sess.run(self.cost, feed_dict = {self.x: X})
def transform(self, X):
return self.sess.run(self.z_mean, feed_dict={self.x: X})
def generate(self, hidden = None):
if hidden is None:
hidden = np.random.normal(size=self.weights["b1"])
return self.sess.run(self.reconstruction, feed_dict={self.z_mean: hidden})
def reconstruct(self, X):
return self.sess.run(self.reconstruction, feed_dict={self.x: X})
def getWeights(self):
return self.sess.run(self.weights['w1'])
def getBiases(self):
return self.sess.run(self.weights['b1'])
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment