Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
a800e9b1
Commit
a800e9b1
authored
Nov 07, 2020
by
The-Indian-Chinna
Browse files
Kwargs update
parent
dd5cc386
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
57 additions
and
111 deletions
+57
-111
official/vision/beta/projects/yolo/modeling/layers/nn_blocks.py
...al/vision/beta/projects/yolo/modeling/layers/nn_blocks.py
+57
-111
No files found.
official/vision/beta/projects/yolo/modeling/layers/nn_blocks.py
View file @
a800e9b1
...
@@ -266,22 +266,24 @@ class DarkResidual(ks.layers.Layer):
...
@@ -266,22 +266,24 @@ class DarkResidual(ks.layers.Layer):
super
().
__init__
(
**
kwargs
)
super
().
__init__
(
**
kwargs
)
def
build
(
self
,
input_shape
):
def
build
(
self
,
input_shape
):
_dark_conv_args
=
{
"use_bias"
:
self
.
_use_bias
,
"kernel_initializer"
:
self
.
_kernel_initializer
,
"bias_initializer"
:
self
.
_bias_initializer
,
"bias_regularizer"
:
self
.
_bias_regularizer
,
"use_bn"
:
self
.
_use_bn
,
"use_sync_bn"
:
self
.
_use_sync_bn
,
"norm_momentum"
:
self
.
_norm_moment
,
"norm_epsilon"
:
self
.
_norm_epsilon
,
"activation"
:
self
.
_conv_activation
,
"kernel_regularizer"
:
self
.
_kernel_regularizer
,
"leaky_alpha"
:
self
.
_leaky_alpha
}
if
self
.
_downsample
:
if
self
.
_downsample
:
self
.
_dconv
=
DarkConv
(
filters
=
self
.
_filters
,
self
.
_dconv
=
DarkConv
(
filters
=
self
.
_filters
,
kernel_size
=
(
3
,
3
),
kernel_size
=
(
3
,
3
),
strides
=
(
2
,
2
),
strides
=
(
2
,
2
),
padding
=
'same'
,
padding
=
'same'
,
use_bias
=
self
.
_use_bias
,
**
_dark_conv_args
)
kernel_initializer
=
self
.
_kernel_initializer
,
bias_initializer
=
self
.
_bias_initializer
,
bias_regularizer
=
self
.
_bias_regularizer
,
use_bn
=
self
.
_use_bn
,
use_sync_bn
=
self
.
_use_sync_bn
,
norm_momentum
=
self
.
_norm_moment
,
norm_epsilon
=
self
.
_norm_epsilon
,
activation
=
self
.
_conv_activation
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
leaky_alpha
=
self
.
_leaky_alpha
)
else
:
else
:
self
.
_dconv
=
Identity
()
self
.
_dconv
=
Identity
()
...
@@ -289,32 +291,13 @@ class DarkResidual(ks.layers.Layer):
...
@@ -289,32 +291,13 @@ class DarkResidual(ks.layers.Layer):
kernel_size
=
(
1
,
1
),
kernel_size
=
(
1
,
1
),
strides
=
(
1
,
1
),
strides
=
(
1
,
1
),
padding
=
'same'
,
padding
=
'same'
,
use_bias
=
self
.
_use_bias
,
**
_dark_conv_args
)
kernel_initializer
=
self
.
_kernel_initializer
,
bias_initializer
=
self
.
_bias_initializer
,
bias_regularizer
=
self
.
_bias_regularizer
,
use_bn
=
self
.
_use_bn
,
use_sync_bn
=
self
.
_use_sync_bn
,
norm_momentum
=
self
.
_norm_moment
,
norm_epsilon
=
self
.
_norm_epsilon
,
activation
=
self
.
_conv_activation
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
leaky_alpha
=
self
.
_leaky_alpha
)
self
.
_conv2
=
DarkConv
(
filters
=
self
.
_filters
,
self
.
_conv2
=
DarkConv
(
filters
=
self
.
_filters
,
kernel_size
=
(
3
,
3
),
kernel_size
=
(
3
,
3
),
strides
=
(
1
,
1
),
strides
=
(
1
,
1
),
padding
=
'same'
,
padding
=
'same'
,
use_bias
=
self
.
_use_bias
,
**
_dark_conv_args
)
kernel_initializer
=
self
.
_kernel_initializer
,
bias_initializer
=
self
.
_bias_initializer
,
bias_regularizer
=
self
.
_bias_regularizer
,
use_bn
=
self
.
_use_bn
,
use_sync_bn
=
self
.
_use_sync_bn
,
norm_momentum
=
self
.
_norm_moment
,
norm_epsilon
=
self
.
_norm_epsilon
,
activation
=
self
.
_conv_activation
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
leaky_alpha
=
self
.
_leaky_alpha
)
self
.
_shortcut
=
ks
.
layers
.
Add
()
self
.
_shortcut
=
ks
.
layers
.
Add
()
# self._activation_fn = ks.layers.Activation(activation=self._sc_activation)
# self._activation_fn = ks.layers.Activation(activation=self._sc_activation)
...
@@ -430,21 +413,23 @@ class CSPTiny(ks.layers.Layer):
...
@@ -430,21 +413,23 @@ class CSPTiny(ks.layers.Layer):
super
().
__init__
(
**
kwargs
)
super
().
__init__
(
**
kwargs
)
def
build
(
self
,
input_shape
):
def
build
(
self
,
input_shape
):
_dark_conv_args
=
{
"use_bias"
:
self
.
_use_bias
,
"kernel_initializer"
:
self
.
_kernel_initializer
,
"bias_initializer"
:
self
.
_bias_initializer
,
"bias_regularizer"
:
self
.
_bias_regularizer
,
"use_bn"
:
self
.
_use_bn
,
"use_sync_bn"
:
self
.
_use_sync_bn
,
"norm_momentum"
:
self
.
_norm_moment
,
"norm_epsilon"
:
self
.
_norm_epsilon
,
"activation"
:
self
.
_conv_activation
,
"kernel_regularizer"
:
self
.
_kernel_regularizer
,
"leaky_alpha"
:
self
.
_leaky_alpha
}
self
.
_convlayer1
=
DarkConv
(
filters
=
self
.
_filters
,
self
.
_convlayer1
=
DarkConv
(
filters
=
self
.
_filters
,
kernel_size
=
(
3
,
3
),
kernel_size
=
(
3
,
3
),
strides
=
(
1
,
1
),
strides
=
(
1
,
1
),
padding
=
'same'
,
padding
=
'same'
,
use_bias
=
self
.
_use_bias
,
**
_dark_conv_args
)
kernel_initializer
=
self
.
_kernel_initializer
,
bias_initializer
=
self
.
_bias_initializer
,
bias_regularizer
=
self
.
_bias_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
use_bn
=
self
.
_use_bn
,
use_sync_bn
=
self
.
_use_sync_bn
,
norm_momentum
=
self
.
_norm_moment
,
norm_epsilon
=
self
.
_norm_epsilon
,
activation
=
self
.
_conv_activation
,
leaky_alpha
=
self
.
_leaky_alpha
)
self
.
_convlayer2
=
DarkConv
(
filters
=
self
.
_filters
//
2
,
self
.
_convlayer2
=
DarkConv
(
filters
=
self
.
_filters
//
2
,
kernel_size
=
(
3
,
3
),
kernel_size
=
(
3
,
3
),
...
@@ -468,33 +453,13 @@ class CSPTiny(ks.layers.Layer):
...
@@ -468,33 +453,13 @@ class CSPTiny(ks.layers.Layer):
kernel_size
=
(
3
,
3
),
kernel_size
=
(
3
,
3
),
strides
=
(
1
,
1
),
strides
=
(
1
,
1
),
padding
=
'same'
,
padding
=
'same'
,
use_bias
=
self
.
_use_bias
,
**
_dark_conv_args
)
kernel_initializer
=
self
.
_kernel_initializer
,
bias_initializer
=
self
.
_bias_initializer
,
bias_regularizer
=
self
.
_bias_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
use_bn
=
self
.
_use_bn
,
use_sync_bn
=
self
.
_use_sync_bn
,
norm_momentum
=
self
.
_norm_moment
,
norm_epsilon
=
self
.
_norm_epsilon
,
activation
=
self
.
_conv_activation
,
leaky_alpha
=
self
.
_leaky_alpha
)
self
.
_convlayer4
=
DarkConv
(
filters
=
self
.
_filters
,
self
.
_convlayer4
=
DarkConv
(
filters
=
self
.
_filters
,
kernel_size
=
(
1
,
1
),
kernel_size
=
(
1
,
1
),
strides
=
(
1
,
1
),
strides
=
(
1
,
1
),
padding
=
'same'
,
padding
=
'same'
,
use_bias
=
self
.
_use_bias
,
**
_dark_conv_args
)
kernel_initializer
=
self
.
_kernel_initializer
,
bias_initializer
=
self
.
_bias_initializer
,
bias_regularizer
=
self
.
_bias_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
use_bn
=
self
.
_use_bn
,
use_sync_bn
=
self
.
_use_sync_bn
,
norm_momentum
=
self
.
_norm_moment
,
norm_epsilon
=
self
.
_norm_epsilon
,
activation
=
self
.
_conv_activation
,
leaky_alpha
=
self
.
_leaky_alpha
)
self
.
_maxpool
=
tf
.
keras
.
layers
.
MaxPool2D
(
pool_size
=
2
,
self
.
_maxpool
=
tf
.
keras
.
layers
.
MaxPool2D
(
pool_size
=
2
,
strides
=
2
,
strides
=
2
,
...
@@ -599,43 +564,29 @@ class CSPDownSample(ks.layers.Layer):
...
@@ -599,43 +564,29 @@ class CSPDownSample(ks.layers.Layer):
self
.
_norm_epsilon
=
norm_epsilon
self
.
_norm_epsilon
=
norm_epsilon
def
build
(
self
,
input_shape
):
def
build
(
self
,
input_shape
):
_dark_conv_args
=
{
"kernel_initializer"
:
self
.
_kernel_initializer
,
"bias_initializer"
:
self
.
_bias_initializer
,
"bias_regularizer"
:
self
.
_bias_regularizer
,
"use_bn"
:
self
.
_use_bn
,
"use_sync_bn"
:
self
.
_use_sync_bn
,
"norm_momentum"
:
self
.
_norm_moment
,
"norm_epsilon"
:
self
.
_norm_epsilon
,
"activation"
:
self
.
_activation
,
"kernel_regularizer"
:
self
.
_kernel_regularizer
,
}
self
.
_conv1
=
DarkConv
(
filters
=
self
.
_filters
,
self
.
_conv1
=
DarkConv
(
filters
=
self
.
_filters
,
kernel_size
=
(
3
,
3
),
kernel_size
=
(
3
,
3
),
strides
=
(
2
,
2
),
strides
=
(
2
,
2
),
kernel_initializer
=
self
.
_kernel_initializer
,
**
_dark_conv_args
)
bias_initializer
=
self
.
_bias_initializer
,
bias_regularizer
=
self
.
_bias_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
use_bn
=
self
.
_use_bn
,
use_sync_bn
=
self
.
_use_sync_bn
,
norm_momentum
=
self
.
_norm_moment
,
norm_epsilon
=
self
.
_norm_epsilon
,
activation
=
self
.
_activation
)
self
.
_conv2
=
DarkConv
(
filters
=
self
.
_filters
//
self
.
_filter_reduce
,
self
.
_conv2
=
DarkConv
(
filters
=
self
.
_filters
//
self
.
_filter_reduce
,
kernel_size
=
(
1
,
1
),
kernel_size
=
(
1
,
1
),
strides
=
(
1
,
1
),
strides
=
(
1
,
1
),
kernel_initializer
=
self
.
_kernel_initializer
,
**
_dark_conv_args
)
bias_initializer
=
self
.
_bias_initializer
,
bias_regularizer
=
self
.
_bias_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
use_bn
=
self
.
_use_bn
,
use_sync_bn
=
self
.
_use_sync_bn
,
norm_momentum
=
self
.
_norm_moment
,
norm_epsilon
=
self
.
_norm_epsilon
,
activation
=
self
.
_activation
)
self
.
_conv3
=
DarkConv
(
filters
=
self
.
_filters
//
self
.
_filter_reduce
,
self
.
_conv3
=
DarkConv
(
filters
=
self
.
_filters
//
self
.
_filter_reduce
,
kernel_size
=
(
1
,
1
),
kernel_size
=
(
1
,
1
),
strides
=
(
1
,
1
),
strides
=
(
1
,
1
),
kernel_initializer
=
self
.
_kernel_initializer
,
**
_dark_conv_args
)
bias_initializer
=
self
.
_bias_initializer
,
bias_regularizer
=
self
.
_bias_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
use_bn
=
self
.
_use_bn
,
use_sync_bn
=
self
.
_use_sync_bn
,
norm_momentum
=
self
.
_norm_moment
,
norm_epsilon
=
self
.
_norm_epsilon
,
activation
=
self
.
_activation
)
def
call
(
self
,
inputs
):
def
call
(
self
,
inputs
):
x
=
self
.
_conv1
(
inputs
)
x
=
self
.
_conv1
(
inputs
)
...
@@ -701,31 +652,26 @@ class CSPConnect(ks.layers.Layer):
...
@@ -701,31 +652,26 @@ class CSPConnect(ks.layers.Layer):
self
.
_norm_epsilon
=
norm_epsilon
self
.
_norm_epsilon
=
norm_epsilon
def
build
(
self
,
input_shape
):
def
build
(
self
,
input_shape
):
_dark_conv_args
=
{
"kernel_initializer"
:
self
.
_kernel_initializer
,
"bias_initializer"
:
self
.
_bias_initializer
,
"bias_regularizer"
:
self
.
_bias_regularizer
,
"use_bn"
:
self
.
_use_bn
,
"use_sync_bn"
:
self
.
_use_sync_bn
,
"norm_momentum"
:
self
.
_norm_moment
,
"norm_epsilon"
:
self
.
_norm_epsilon
,
"activation"
:
self
.
_activation
,
"kernel_regularizer"
:
self
.
_kernel_regularizer
,
}
self
.
_conv1
=
DarkConv
(
filters
=
self
.
_filters
//
self
.
_filter_reduce
,
self
.
_conv1
=
DarkConv
(
filters
=
self
.
_filters
//
self
.
_filter_reduce
,
kernel_size
=
(
1
,
1
),
kernel_size
=
(
1
,
1
),
strides
=
(
1
,
1
),
strides
=
(
1
,
1
),
kernel_initializer
=
self
.
_kernel_initializer
,
**
_dark_conv_args
)
bias_initializer
=
self
.
_bias_initializer
,
bias_regularizer
=
self
.
_bias_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
use_bn
=
self
.
_use_bn
,
use_sync_bn
=
self
.
_use_sync_bn
,
norm_momentum
=
self
.
_norm_moment
,
norm_epsilon
=
self
.
_norm_epsilon
,
activation
=
self
.
_activation
)
self
.
_concat
=
ks
.
layers
.
Concatenate
(
axis
=-
1
)
self
.
_concat
=
ks
.
layers
.
Concatenate
(
axis
=-
1
)
self
.
_conv2
=
DarkConv
(
filters
=
self
.
_filters
,
self
.
_conv2
=
DarkConv
(
filters
=
self
.
_filters
,
kernel_size
=
(
1
,
1
),
kernel_size
=
(
1
,
1
),
strides
=
(
1
,
1
),
strides
=
(
1
,
1
),
kernel_initializer
=
self
.
_kernel_initializer
,
**
_dark_conv_args
)
bias_initializer
=
self
.
_bias_initializer
,
bias_regularizer
=
self
.
_bias_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
use_bn
=
self
.
_use_bn
,
use_sync_bn
=
self
.
_use_sync_bn
,
norm_momentum
=
self
.
_norm_moment
,
norm_epsilon
=
self
.
_norm_epsilon
,
activation
=
self
.
_activation
)
def
call
(
self
,
inputs
):
def
call
(
self
,
inputs
):
x_prev
,
x_csp
=
inputs
x_prev
,
x_csp
=
inputs
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment