Commit a6f10ec0 authored by Haoyu Zhang's avatar Haoyu Zhang Committed by A. Unique TensorFlower
Browse files

Fix filenames and links in Keras ResNet README.

PiperOrigin-RevId: 264411162
parent 3858c82b
......@@ -18,20 +18,20 @@ official.resnet`.
Download and extract the CIFAR-10 data. You can use the following script:
```bash
python cifar10_download_and_extract.py
python ../../r1/resnet/cifar10_download_and_extract.py
```
After you download the data, you can run the program by:
```bash
python keras_cifar_main.py
python resnet_cifar_main.py
```
If you did not use the default directory to download the data, specify the
If you did not use the default directory to download the data, specify the
location with the `--data_dir` flag, like:
```bash
python keras_cifar_main.py --data_dir=/path/to/cifar
python resnet_cifar_main.py --data_dir=/path/to/cifar
```
## ImageNet
......@@ -44,14 +44,14 @@ provide a few options.
Once your dataset is ready, you can begin training the model as follows:
```bash
python keras_imagenet_main.py
python resnet_imagenet_main.py
```
Again, if you did not download the data to the default directory, specify the
location with the `--data_dir` flag:
```bash
python keras_imagenet_main.py --data_dir=/path/to/imagenet
python resnet_imagenet_main.py --data_dir=/path/to/imagenet
```
There are more flag options you can specify. Here are some examples:
......@@ -70,16 +70,16 @@ For example, this is a typical command line to run with ImageNet data with
batch size 128 per GPU:
```bash
python -m keras_imagenet_main \
--model_dir=/tmp/model_dir/something \
--num_gpus=2 \
--batch_size=128 \
--train_epochs=90 \
--train_steps=10 \
--use_synthetic_data=false
python -m resnet_imagenet_main \
--model_dir=/tmp/model_dir/something \
--num_gpus=2 \
--batch_size=128 \
--train_epochs=90 \
--train_steps=10 \
--use_synthetic_data=false
```
See [`keras_common.py`](keras_common.py) for full list of options.
See [`common.py`](common.py) for full list of options.
## Using multiple GPUs
You can train these models on multiple GPUs using `tf.distribute.Strategy` API.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment