Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
a5d7a452
Commit
a5d7a452
authored
May 27, 2022
by
Scott Zhu
Committed by
A. Unique TensorFlower
May 27, 2022
Browse files
Prepare for upcoming keras initializer change.
PiperOrigin-RevId: 451476877
parent
6b6b3a9c
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
35 additions
and
18 deletions
+35
-18
official/projects/s3d/modeling/inception_utils.py
official/projects/s3d/modeling/inception_utils.py
+16
-9
official/projects/s3d/modeling/net_utils.py
official/projects/s3d/modeling/net_utils.py
+19
-9
No files found.
official/projects/s3d/modeling/inception_utils.py
View file @
a5d7a452
...
...
@@ -17,6 +17,7 @@ from typing import Callable, Dict, Optional, Sequence, Set, Text, Tuple, Type, U
import
tensorflow
as
tf
from
official.modeling
import
tf_utils
from
official.projects.s3d.modeling
import
net_utils
from
official.vision.modeling.layers
import
nn_blocks_3d
...
...
@@ -126,7 +127,7 @@ def inception_v1_stem_cells(
strides
=
[
2
,
2
,
2
],
padding
=
'same'
,
use_bias
=
False
,
kernel_initializer
=
kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
kernel_initializer
)
,
kernel_regularizer
=
kernel_regularizer
,
name
=
layer_naming_fn
(
end_point
))(
inputs
)
...
...
@@ -161,7 +162,7 @@ def inception_v1_stem_cells(
kernel_size
=
[
1
,
1
,
1
],
padding
=
'same'
,
use_bias
=
False
,
kernel_initializer
=
kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
kernel_initializer
)
,
kernel_regularizer
=
kernel_regularizer
,
name
=
layer_naming_fn
(
end_point
))(
net
)
...
...
@@ -191,7 +192,7 @@ def inception_v1_stem_cells(
norm_momentum
=
norm_momentum
,
norm_epsilon
=
norm_epsilon
,
temporal_conv_initializer
=
temporal_conv_initializer
,
kernel_initializer
=
kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
kernel_initializer
)
,
kernel_regularizer
=
kernel_regularizer
,
name
=
layer_naming_fn
(
end_point
))(
net
)
...
...
@@ -330,7 +331,8 @@ class InceptionV1CellLayer(tf.keras.layers.Layer):
kernel_size
=
[
1
,
1
,
1
],
padding
=
'same'
,
use_bias
=
False
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
),
kernel_regularizer
=
self
.
_kernel_regularizer
),
# norm
dict
(
...
...
@@ -349,7 +351,8 @@ class InceptionV1CellLayer(tf.keras.layers.Layer):
kernel_size
=
[
1
,
1
,
1
],
padding
=
'same'
,
use_bias
=
False
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
),
kernel_regularizer
=
self
.
_kernel_regularizer
),
# norm
dict
(
...
...
@@ -371,7 +374,8 @@ class InceptionV1CellLayer(tf.keras.layers.Layer):
norm_momentum
=
self
.
_norm_momentum
,
norm_epsilon
=
self
.
_norm_epsilon
,
temporal_conv_initializer
=
self
.
_temporal_conv_initializer
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
),
kernel_regularizer
=
self
.
_kernel_regularizer
),
]
branch_2_params
=
[
...
...
@@ -381,7 +385,8 @@ class InceptionV1CellLayer(tf.keras.layers.Layer):
kernel_size
=
[
1
,
1
,
1
],
padding
=
'same'
,
use_bias
=
False
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
),
kernel_regularizer
=
self
.
_kernel_regularizer
),
# norm
dict
(
...
...
@@ -403,7 +408,8 @@ class InceptionV1CellLayer(tf.keras.layers.Layer):
norm_momentum
=
self
.
_norm_momentum
,
norm_epsilon
=
self
.
_norm_epsilon
,
temporal_conv_initializer
=
self
.
_temporal_conv_initializer
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
),
kernel_regularizer
=
self
.
_kernel_regularizer
)
]
branch_3_params
=
[
...
...
@@ -413,7 +419,8 @@ class InceptionV1CellLayer(tf.keras.layers.Layer):
kernel_size
=
[
1
,
1
,
1
],
padding
=
'same'
,
use_bias
=
False
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
),
kernel_regularizer
=
self
.
_kernel_regularizer
),
# norm
dict
(
...
...
official/projects/s3d/modeling/net_utils.py
View file @
a5d7a452
...
...
@@ -16,6 +16,7 @@
from
typing
import
Any
,
Text
,
Sequence
,
Union
import
tensorflow
as
tf
from
official.modeling
import
tf_utils
WEIGHT_INITIALIZER
=
{
'Xavier'
:
tf
.
keras
.
initializers
.
GlorotUniform
,
...
...
@@ -94,7 +95,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer):
kernel_size
=
[
self
.
_kernel_size
]
*
3
,
strides
=
self
.
_strides
,
dilation_rate
=
self
.
_rates
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
),
))
elif
self
.
_conv_type
==
'2d'
:
conv_layer_params
.
append
(
...
...
@@ -103,7 +105,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer):
kernel_size
=
[
1
,
self
.
_kernel_size
,
self
.
_kernel_size
],
strides
=
[
1
,
self
.
_strides
[
1
],
self
.
_strides
[
2
]],
dilation_rate
=
[
1
,
self
.
_rates
[
1
],
self
.
_rates
[
2
]],
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
),
))
elif
self
.
_conv_type
==
'1+2d'
:
channels_in
=
input_shape
[
self
.
_channel_axis
]
...
...
@@ -113,7 +116,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer):
kernel_size
=
[
self
.
_kernel_size
,
1
,
1
],
strides
=
[
self
.
_strides
[
0
],
1
,
1
],
dilation_rate
=
[
self
.
_rates
[
0
],
1
,
1
],
kernel_initializer
=
self
.
_temporal_conv_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_temporal_conv_initializer
),
))
conv_layer_params
.
append
(
dict
(
...
...
@@ -121,7 +125,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer):
kernel_size
=
[
1
,
self
.
_kernel_size
,
self
.
_kernel_size
],
strides
=
[
1
,
self
.
_strides
[
1
],
self
.
_strides
[
2
]],
dilation_rate
=
[
1
,
self
.
_rates
[
1
],
self
.
_rates
[
2
]],
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
),
))
elif
self
.
_conv_type
==
'2+1d'
:
conv_layer_params
.
append
(
...
...
@@ -130,7 +135,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer):
kernel_size
=
[
1
,
self
.
_kernel_size
,
self
.
_kernel_size
],
strides
=
[
1
,
self
.
_strides
[
1
],
self
.
_strides
[
2
]],
dilation_rate
=
[
1
,
self
.
_rates
[
1
],
self
.
_rates
[
2
]],
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
),
))
conv_layer_params
.
append
(
dict
(
...
...
@@ -138,7 +144,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer):
kernel_size
=
[
self
.
_kernel_size
,
1
,
1
],
strides
=
[
self
.
_strides
[
0
],
1
,
1
],
dilation_rate
=
[
self
.
_rates
[
0
],
1
,
1
],
kernel_initializer
=
self
.
_temporal_conv_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_temporal_conv_initializer
),
))
elif
self
.
_conv_type
==
'1+1+1d'
:
conv_layer_params
.
append
(
...
...
@@ -147,7 +154,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer):
kernel_size
=
[
1
,
1
,
self
.
_kernel_size
],
strides
=
[
1
,
1
,
self
.
_strides
[
2
]],
dilation_rate
=
[
1
,
1
,
self
.
_rates
[
2
]],
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
),
))
conv_layer_params
.
append
(
dict
(
...
...
@@ -155,7 +163,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer):
kernel_size
=
[
1
,
self
.
_kernel_size
,
1
],
strides
=
[
1
,
self
.
_strides
[
1
],
1
],
dilation_rate
=
[
1
,
self
.
_rates
[
1
],
1
],
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
),
))
conv_layer_params
.
append
(
dict
(
...
...
@@ -163,7 +172,8 @@ class ParameterizedConvLayer(tf.keras.layers.Layer):
kernel_size
=
[
self
.
_kernel_size
,
1
,
1
],
strides
=
[
self
.
_strides
[
0
],
1
,
1
],
dilation_rate
=
[
self
.
_rates
[
0
],
1
,
1
],
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
),
))
else
:
raise
ValueError
(
'Unsupported conv_type: {}'
.
format
(
self
.
_conv_type
))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment