"scripts/git@developer.sourcefind.cn:change/sglang.git" did not exist on "6a63a9852e7c6e789400a58bcc3b784268e38566"
Commit a470b1c1 authored by Hongkun Yu's avatar Hongkun Yu Committed by A. Unique TensorFlower
Browse files

Internal change

PiperOrigin-RevId: 358201408
parent 12acb414
...@@ -16,3 +16,4 @@ ...@@ -16,3 +16,4 @@
"""Experiments definition.""" """Experiments definition."""
# pylint: disable=unused-import # pylint: disable=unused-import
from official.nlp.configs import finetuning_experiments from official.nlp.configs import finetuning_experiments
from official.nlp.configs import pretraining_experiments
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Pretraining experiment configurations."""
# pylint: disable=g-doc-return-or-yield,line-too-long
from official.core import config_definitions as cfg
from official.core import exp_factory
from official.modeling import optimization
from official.nlp.data import pretrain_dataloader
from official.nlp.tasks import masked_lm
@exp_factory.register_config_factory('bert/pretraining')
def bert_pretraining() -> cfg.ExperimentConfig:
"""BERT pretraining experiment."""
config = cfg.ExperimentConfig(
task=masked_lm.MaskedLMConfig(
train_data=pretrain_dataloader.BertPretrainDataConfig(),
validation_data=pretrain_dataloader.BertPretrainDataConfig(
is_training=False)),
trainer=cfg.TrainerConfig(
train_steps=1000000,
optimizer_config=optimization.OptimizationConfig({
'optimizer': {
'type': 'adamw',
'adamw': {
'weight_decay_rate':
0.01,
'exclude_from_weight_decay': [
'LayerNorm', 'layer_norm', 'bias'
],
}
},
'learning_rate': {
'type': 'polynomial',
'polynomial': {
'initial_learning_rate': 1e-4,
'end_learning_rate': 0.0,
}
},
'warmup': {
'type': 'polynomial'
}
})),
restrictions=[
'task.train_data.is_training != None',
'task.validation_data.is_training != None'
])
return config
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment