"vscode:/vscode.git/clone" did not exist on "ffe254db2997f6d3269364778c8174629acaf3a3"
Commit a298143c authored by Lukasz Kaiser's avatar Lukasz Kaiser Committed by GitHub
Browse files

Merge pull request #954 from lukaszkaiser/ngpu-update

Update to the Neural GPU.
parents ea364a9e a315e568
...@@ -4,7 +4,6 @@ in [[http://arxiv.org/abs/1511.08228]]. ...@@ -4,7 +4,6 @@ in [[http://arxiv.org/abs/1511.08228]].
Requirements: Requirements:
* TensorFlow (see tensorflow.org for how to install) * TensorFlow (see tensorflow.org for how to install)
* Matplotlib for Python (sudo apt-get install python-matplotlib)
The model can be trained on the following algorithmic tasks: The model can be trained on the following algorithmic tasks:
...@@ -26,17 +25,27 @@ The model can be trained on the following algorithmic tasks: ...@@ -26,17 +25,27 @@ The model can be trained on the following algorithmic tasks:
* `qadd` - Long quaternary addition * `qadd` - Long quaternary addition
* `search` - Search for symbol key in dictionary * `search` - Search for symbol key in dictionary
The value range for symbols are defined by the `niclass` and `noclass` flags. It can also be trained on the WMT English-French translation task:
In particular, the values are in the range `min(--niclass, noclass) - 1`.
So if you set `--niclass=33` and `--noclass=33` (the default) then `--task=rev`
will be reversing lists of 32 symbols, and `--task=id` will be identity on a
list of up to 32 symbols.
* `wmt` - WMT English-French translation (data will be downloaded)
To train the model on the reverse task run: The value range for symbols are defined by the `vocab_size` flag.
In particular, the values are in the range `vocab_size - 1`.
So if you set `--vocab_size=16` (the default) then `--problem=rev`
will be reversing lists of 15 symbols, and `--problem=id` will be identity
on a list of up to 15 symbols.
To train the model on the binary multiplication task run:
```
python neural_gpu_trainer.py --problem=bmul
```
This trains the Extended Neural GPU, to train the original model run:
``` ```
python neural_gpu_trainer.py --task=rev python neural_gpu_trainer.py --problem=bmul --beam_size=0
``` ```
While training, interim / checkpoint model parameters will be While training, interim / checkpoint model parameters will be
...@@ -47,16 +56,16 @@ with, hit `Ctrl-C` to stop the training process. The latest ...@@ -47,16 +56,16 @@ with, hit `Ctrl-C` to stop the training process. The latest
model parameters will be in `/tmp/neural_gpu/neural_gpu.ckpt-<step>` model parameters will be in `/tmp/neural_gpu/neural_gpu.ckpt-<step>`
and used on any subsequent run. and used on any subsequent run.
To test a trained model on how well it decodes run: To evaluate a trained model on how well it decodes run:
``` ```
python neural_gpu_trainer.py --task=rev --mode=1 python neural_gpu_trainer.py --problem=bmul --mode=1
``` ```
To produce an animation of the result run: To interact with a model (experimental, see code) run:
``` ```
python neural_gpu_trainer.py --task=rev --mode=1 --animate=True python neural_gpu_trainer.py --problem=bmul --mode=2
``` ```
Maintained by Lukasz Kaiser (lukaszkaiser) Maintained by Lukasz Kaiser (lukaszkaiser)
...@@ -12,9 +12,10 @@ ...@@ -12,9 +12,10 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================== # ==============================================================================
"""Convolutional Gated Recurrent Networks for Algorithm Learning.""" """Neural GPU -- data generation and batching utilities."""
import math import math
import os
import random import random
import sys import sys
import time import time
...@@ -22,22 +23,28 @@ import time ...@@ -22,22 +23,28 @@ import time
import numpy as np import numpy as np
import tensorflow as tf import tensorflow as tf
from tensorflow.python.platform import gfile import program_utils
FLAGS = tf.app.flags.FLAGS FLAGS = tf.app.flags.FLAGS
bins = [8, 12, 16, 20, 24, 28, 32, 36, 40, 48, 64, 128] bins = [2 + bin_idx_i for bin_idx_i in xrange(256)]
all_tasks = ["sort", "kvsort", "id", "rev", "rev2", "incr", "add", "left", all_tasks = ["sort", "kvsort", "id", "rev", "rev2", "incr", "add", "left",
"right", "left-shift", "right-shift", "bmul", "mul", "dup", "right", "left-shift", "right-shift", "bmul", "mul", "dup",
"badd", "qadd", "search"] "badd", "qadd", "search", "progeval", "progsynth"]
forward_max = 128
log_filename = "" log_filename = ""
vocab, rev_vocab = None, None
def pad(l): def pad(l):
for b in bins: for b in bins:
if b >= l: return b if b >= l: return b
return forward_max return bins[-1]
def bin_for(l):
for i, b in enumerate(bins):
if b >= l: return i
return len(bins) - 1
train_set = {} train_set = {}
...@@ -50,6 +57,35 @@ for some_task in all_tasks: ...@@ -50,6 +57,35 @@ for some_task in all_tasks:
test_set[some_task].append([]) test_set[some_task].append([])
def read_tmp_file(name):
"""Read from a file with the given name in our log directory or above."""
dirname = os.path.dirname(log_filename)
fname = os.path.join(dirname, name + ".txt")
if not tf.gfile.Exists(fname):
print_out("== not found file: " + fname)
fname = os.path.join(dirname, "../" + name + ".txt")
if not tf.gfile.Exists(fname):
print_out("== not found file: " + fname)
fname = os.path.join(dirname, "../../" + name + ".txt")
if not tf.gfile.Exists(fname):
print_out("== not found file: " + fname)
return None
print_out("== found file: " + fname)
res = []
with tf.gfile.GFile(fname, mode="r") as f:
for line in f:
res.append(line.strip())
return res
def write_tmp_file(name, lines):
dirname = os.path.dirname(log_filename)
fname = os.path.join(dirname, name + ".txt")
with tf.gfile.GFile(fname, mode="w") as f:
for line in lines:
f.write(line + "\n")
def add(n1, n2, base=10): def add(n1, n2, base=10):
"""Add two numbers represented as lower-endian digit lists.""" """Add two numbers represented as lower-endian digit lists."""
k = max(len(n1), len(n2)) + 1 k = max(len(n1), len(n2)) + 1
...@@ -130,6 +166,30 @@ def init_data(task, length, nbr_cases, nclass): ...@@ -130,6 +166,30 @@ def init_data(task, length, nbr_cases, nclass):
sorted_kv = [(k, vals[i]) for (k, i) in sorted(keys)] sorted_kv = [(k, vals[i]) for (k, i) in sorted(keys)]
return [x for p in kv for x in p], [x for p in sorted_kv for x in p] return [x for p in kv for x in p], [x for p in sorted_kv for x in p]
def prog_io_pair(prog, max_len, counter=0):
try:
ilen = np.random.randint(max_len - 3) + 1
bound = max(15 - (counter / 20), 1)
inp = [random.choice(range(-bound, bound)) for _ in range(ilen)]
inp_toks = [program_utils.prog_rev_vocab[t]
for t in program_utils.tokenize(str(inp)) if t != ","]
out = program_utils.evaluate(prog, {"a": inp})
out_toks = [program_utils.prog_rev_vocab[t]
for t in program_utils.tokenize(str(out)) if t != ","]
if counter > 400:
out_toks = []
if (out_toks and out_toks[0] == program_utils.prog_rev_vocab["["] and
len(out_toks) != len([o for o in out if o == ","]) + 3):
raise ValueError("generated list with too long ints")
if (out_toks and out_toks[0] != program_utils.prog_rev_vocab["["] and
len(out_toks) > 1):
raise ValueError("generated one int but tokenized it to many")
if len(out_toks) > max_len:
raise ValueError("output too long")
return (inp_toks, out_toks)
except ValueError:
return prog_io_pair(prog, max_len, counter+1)
def spec(inp): def spec(inp):
"""Return the target given the input for some tasks.""" """Return the target given the input for some tasks."""
if task == "sort": if task == "sort":
...@@ -164,43 +224,114 @@ def init_data(task, length, nbr_cases, nclass): ...@@ -164,43 +224,114 @@ def init_data(task, length, nbr_cases, nclass):
l = length l = length
cur_time = time.time() cur_time = time.time()
total_time = 0.0 total_time = 0.0
for case in xrange(nbr_cases):
is_prog = task in ["progeval", "progsynth"]
if is_prog:
inputs_per_prog = 5
program_utils.make_vocab()
progs = read_tmp_file("programs_len%d" % (l / 10))
if not progs:
progs = program_utils.gen(l / 10, 1.2 * nbr_cases / inputs_per_prog)
write_tmp_file("programs_len%d" % (l / 10), progs)
prog_ios = read_tmp_file("programs_len%d_io" % (l / 10))
nbr_cases = min(nbr_cases, len(progs) * inputs_per_prog) / 1.2
if not prog_ios:
# Generate program io data.
prog_ios = []
for pidx, prog in enumerate(progs):
if pidx % 500 == 0:
print_out("== generating io pairs for program %d" % pidx)
if pidx * inputs_per_prog > nbr_cases * 1.2:
break
ptoks = [program_utils.prog_rev_vocab[t]
for t in program_utils.tokenize(prog)]
ptoks.append(program_utils.prog_rev_vocab["_EOS"])
plen = len(ptoks)
for _ in xrange(inputs_per_prog):
if task == "progeval":
inp, out = prog_io_pair(prog, plen)
prog_ios.append(str(inp) + "\t" + str(out) + "\t" + prog)
elif task == "progsynth":
plen = max(len(ptoks), 8)
for _ in xrange(3):
inp, out = prog_io_pair(prog, plen / 2)
prog_ios.append(str(inp) + "\t" + str(out) + "\t" + prog)
write_tmp_file("programs_len%d_io" % (l / 10), prog_ios)
prog_ios_dict = {}
for s in prog_ios:
i, o, p = s.split("\t")
i_clean = "".join([c for c in i if c.isdigit() or c == " "])
o_clean = "".join([c for c in o if c.isdigit() or c == " "])
inp = [int(x) for x in i_clean.split()]
out = [int(x) for x in o_clean.split()]
if inp and out:
if p in prog_ios_dict:
prog_ios_dict[p].append([inp, out])
else:
prog_ios_dict[p] = [[inp, out]]
# Use prog_ios_dict to create data.
progs = []
for prog in prog_ios_dict:
if len([c for c in prog if c == ";"]) <= (l / 10):
progs.append(prog)
nbr_cases = min(nbr_cases, len(progs) * inputs_per_prog) / 1.2
print_out("== %d training cases on %d progs" % (nbr_cases, len(progs)))
for pidx, prog in enumerate(progs):
if pidx * inputs_per_prog > nbr_cases * 1.2:
break
ptoks = [program_utils.prog_rev_vocab[t]
for t in program_utils.tokenize(prog)]
ptoks.append(program_utils.prog_rev_vocab["_EOS"])
plen = len(ptoks)
dset = train_set if pidx < nbr_cases / inputs_per_prog else test_set
for _ in xrange(inputs_per_prog):
if task == "progeval":
inp, out = prog_ios_dict[prog].pop()
dset[task][bin_for(plen)].append([[ptoks, inp, [], []], [out]])
elif task == "progsynth":
plen, ilist = max(len(ptoks), 8), [[]]
for _ in xrange(3):
inp, out = prog_ios_dict[prog].pop()
ilist.append(inp + out)
dset[task][bin_for(plen)].append([ilist, [ptoks]])
for case in xrange(0 if is_prog else nbr_cases):
total_time += time.time() - cur_time total_time += time.time() - cur_time
cur_time = time.time() cur_time = time.time()
if l > 10000 and case % 100 == 1: if l > 10000 and case % 100 == 1:
print_out(" avg gen time %.4f s" % (total_time / float(case))) print_out(" avg gen time %.4f s" % (total_time / float(case)))
if task in ["add", "badd", "qadd", "bmul", "mul"]: if task in ["add", "badd", "qadd", "bmul", "mul"]:
i, t = rand_pair(l, task) i, t = rand_pair(l, task)
train_set[task][len(i)].append([i, t]) train_set[task][bin_for(len(i))].append([[[], i, [], []], [t]])
i, t = rand_pair(l, task) i, t = rand_pair(l, task)
test_set[task][len(i)].append([i, t]) test_set[task][bin_for(len(i))].append([[[], i, [], []], [t]])
elif task == "dup": elif task == "dup":
i, t = rand_dup_pair(l) i, t = rand_dup_pair(l)
train_set[task][len(i)].append([i, t]) train_set[task][bin_for(len(i))].append([[i], [t]])
i, t = rand_dup_pair(l) i, t = rand_dup_pair(l)
test_set[task][len(i)].append([i, t]) test_set[task][bin_for(len(i))].append([[i], [t]])
elif task == "rev2": elif task == "rev2":
i, t = rand_rev2_pair(l) i, t = rand_rev2_pair(l)
train_set[task][len(i)].append([i, t]) train_set[task][bin_for(len(i))].append([[i], [t]])
i, t = rand_rev2_pair(l) i, t = rand_rev2_pair(l)
test_set[task][len(i)].append([i, t]) test_set[task][bin_for(len(i))].append([[i], [t]])
elif task == "search": elif task == "search":
i, t = rand_search_pair(l) i, t = rand_search_pair(l)
train_set[task][len(i)].append([i, t]) train_set[task][bin_for(len(i))].append([[i], [t]])
i, t = rand_search_pair(l) i, t = rand_search_pair(l)
test_set[task][len(i)].append([i, t]) test_set[task][bin_for(len(i))].append([[i], [t]])
elif task == "kvsort": elif task == "kvsort":
i, t = rand_kvsort_pair(l) i, t = rand_kvsort_pair(l)
train_set[task][len(i)].append([i, t]) train_set[task][bin_for(len(i))].append([[i], [t]])
i, t = rand_kvsort_pair(l) i, t = rand_kvsort_pair(l)
test_set[task][len(i)].append([i, t]) test_set[task][bin_for(len(i))].append([[i], [t]])
else: elif task not in ["progeval", "progsynth"]:
inp = [np.random.randint(nclass - 1) + 1 for i in xrange(l)] inp = [np.random.randint(nclass - 1) + 1 for i in xrange(l)]
target = spec(inp) target = spec(inp)
train_set[task][l].append([inp, target]) train_set[task][bin_for(l)].append([[inp], [target]])
inp = [np.random.randint(nclass - 1) + 1 for i in xrange(l)] inp = [np.random.randint(nclass - 1) + 1 for i in xrange(l)]
target = spec(inp) target = spec(inp)
test_set[task][l].append([inp, target]) test_set[task][bin_for(l)].append([[inp], [target]])
def to_symbol(i): def to_symbol(i):
...@@ -218,37 +349,31 @@ def to_id(s): ...@@ -218,37 +349,31 @@ def to_id(s):
return int(s) + 1 return int(s) + 1
def get_batch(max_length, batch_size, do_train, task, offset=None, preset=None): def get_batch(bin_id, batch_size, data_set, height, offset=None, preset=None):
"""Get a batch of data, training or testing.""" """Get a batch of data, training or testing."""
inputs = [] inputs, targets = [], []
targets = [] pad_length = bins[bin_id]
length = max_length
if preset is None:
cur_set = test_set[task]
if do_train: cur_set = train_set[task]
while not cur_set[length]:
length -= 1
pad_length = pad(length)
for b in xrange(batch_size): for b in xrange(batch_size):
if preset is None: if preset is None:
elem = random.choice(cur_set[length]) elem = random.choice(data_set[bin_id])
if offset is not None and offset + b < len(cur_set[length]): if offset is not None and offset + b < len(data_set[bin_id]):
elem = cur_set[length][offset + b] elem = data_set[bin_id][offset + b]
else: else:
elem = preset elem = preset
inp, target = elem[0], elem[1] inpt, targett, inpl, targetl = elem[0], elem[1], [], []
assert len(inp) == length for inp in inpt:
inputs.append(inp + [0 for l in xrange(pad_length - len(inp))]) inpl.append(inp + [0 for _ in xrange(pad_length - len(inp))])
targets.append(target + [0 for l in xrange(pad_length - len(target))]) if len(inpl) == 1:
res_input = [] for _ in xrange(height - 1):
res_target = [] inpl.append([0 for _ in xrange(pad_length)])
for l in xrange(pad_length): for target in targett:
new_input = np.array([inputs[b][l] for b in xrange(batch_size)], targetl.append(target + [0 for _ in xrange(pad_length - len(target))])
dtype=np.int32) inputs.append(inpl)
new_target = np.array([targets[b][l] for b in xrange(batch_size)], targets.append(targetl)
dtype=np.int32) res_input = np.array(inputs, dtype=np.int32)
res_input.append(new_input) res_target = np.array(targets, dtype=np.int32)
res_target.append(new_target) assert list(res_input.shape) == [batch_size, height, pad_length]
assert list(res_target.shape) == [batch_size, 1, pad_length]
return res_input, res_target return res_input, res_target
...@@ -256,11 +381,11 @@ def print_out(s, newline=True): ...@@ -256,11 +381,11 @@ def print_out(s, newline=True):
"""Print a message out and log it to file.""" """Print a message out and log it to file."""
if log_filename: if log_filename:
try: try:
with gfile.GFile(log_filename, mode="a") as f: with tf.gfile.GFile(log_filename, mode="a") as f:
f.write(s + ("\n" if newline else "")) f.write(s + ("\n" if newline else ""))
# pylint: disable=bare-except # pylint: disable=bare-except
except: except:
sys.stdout.write("Error appending to %s\n" % log_filename) sys.stderr.write("Error appending to %s\n" % log_filename)
sys.stdout.write(s + ("\n" if newline else "")) sys.stdout.write(s + ("\n" if newline else ""))
sys.stdout.flush() sys.stdout.flush()
...@@ -269,21 +394,36 @@ def decode(output): ...@@ -269,21 +394,36 @@ def decode(output):
return [np.argmax(o, axis=1) for o in output] return [np.argmax(o, axis=1) for o in output]
def accuracy(inpt, output, target, batch_size, nprint): def accuracy(inpt_t, output, target_t, batch_size, nprint,
beam_out=None, beam_scores=None):
"""Calculate output accuracy given target.""" """Calculate output accuracy given target."""
assert nprint < batch_size + 1 assert nprint < batch_size + 1
inpt = []
for h in xrange(inpt_t.shape[1]):
inpt.extend([inpt_t[:, h, l] for l in xrange(inpt_t.shape[2])])
target = [target_t[:, 0, l] for l in xrange(target_t.shape[2])]
def tok(i):
if rev_vocab and i < len(rev_vocab):
return rev_vocab[i]
return str(i - 1)
def task_print(inp, output, target): def task_print(inp, output, target):
stop_bound = 0 stop_bound = 0
print_len = 0 print_len = 0
while print_len < len(target) and target[print_len] > stop_bound: while print_len < len(target) and target[print_len] > stop_bound:
print_len += 1 print_len += 1
print_out(" i: " + " ".join([str(i - 1) for i in inp if i > 0])) print_out(" i: " + " ".join([tok(i) for i in inp if i > 0]))
print_out(" o: " + print_out(" o: " +
" ".join([str(output[l] - 1) for l in xrange(print_len)])) " ".join([tok(output[l]) for l in xrange(print_len)]))
print_out(" t: " + print_out(" t: " +
" ".join([str(target[l] - 1) for l in xrange(print_len)])) " ".join([tok(target[l]) for l in xrange(print_len)]))
decoded_target = target decoded_target = target
decoded_output = decode(output) decoded_output = decode(output)
# Use beam output if given and score is high enough.
if beam_out is not None:
for b in xrange(batch_size):
if beam_scores[b] >= 10.0:
for l in xrange(min(len(decoded_output), beam_out.shape[2])):
decoded_output[l][b] = int(beam_out[b, 0, l])
total = 0 total = 0
errors = 0 errors = 0
seq = [0 for b in xrange(batch_size)] seq = [0 for b in xrange(batch_size)]
...@@ -311,6 +451,7 @@ def accuracy(inpt, output, target, batch_size, nprint): ...@@ -311,6 +451,7 @@ def accuracy(inpt, output, target, batch_size, nprint):
def safe_exp(x): def safe_exp(x):
perp = 10000 perp = 10000
x = float(x)
if x < 100: perp = math.exp(x) if x < 100: perp = math.exp(x)
if perp > 10000: return 10000 if perp > 10000: return 10000
return perp return perp
This diff is collapsed.
This diff is collapsed.
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for generating program synthesis and evaluation data."""
import contextlib
import sys
import StringIO
import random
import os
class ListType(object):
def __init__(self, arg):
self.arg = arg
def __str__(self):
return "[" + str(self.arg) + "]"
def __eq__(self, other):
if not isinstance(other, ListType):
return False
return self.arg == other.arg
def __hash__(self):
return hash(self.arg)
class VarType(object):
def __init__(self, arg):
self.arg = arg
def __str__(self):
return str(self.arg)
def __eq__(self, other):
if not isinstance(other, VarType):
return False
return self.arg == other.arg
def __hash__(self):
return hash(self.arg)
class FunctionType(object):
def __init__(self, args):
self.args = args
def __str__(self):
return str(self.args[0]) + " -> " + str(self.args[1])
def __eq__(self, other):
if not isinstance(other, FunctionType):
return False
return self.args == other.args
def __hash__(self):
return hash(tuple(self.args))
class Function(object):
def __init__(self, name, arg_types, output_type, fn_arg_types = None):
self.name = name
self.arg_types = arg_types
self.fn_arg_types = fn_arg_types or []
self.output_type = output_type
Null = 100
## Functions
f_head = Function("c_head", [ListType("Int")], "Int")
def c_head(xs): return xs[0] if len(xs) > 0 else Null
f_last = Function("c_last", [ListType("Int")], "Int")
def c_last(xs): return xs[-1] if len(xs) > 0 else Null
f_take = Function("c_take", ["Int", ListType("Int")], ListType("Int"))
def c_take(n, xs): return xs[:n]
f_drop = Function("c_drop", ["Int", ListType("Int")], ListType("Int"))
def c_drop(n, xs): return xs[n:]
f_access = Function("c_access", ["Int", ListType("Int")], "Int")
def c_access(n, xs): return xs[n] if n >= 0 and len(xs) > n else Null
f_max = Function("c_max", [ListType("Int")], "Int")
def c_max(xs): return max(xs) if len(xs) > 0 else Null
f_min = Function("c_min", [ListType("Int")], "Int")
def c_min(xs): return min(xs) if len(xs) > 0 else Null
f_reverse = Function("c_reverse", [ListType("Int")], ListType("Int"))
def c_reverse(xs): return list(reversed(xs))
f_sort = Function("sorted", [ListType("Int")], ListType("Int"))
# def c_sort(xs): return sorted(xs)
f_sum = Function("sum", [ListType("Int")], "Int")
# def c_sum(xs): return sum(xs)
## Lambdas
# Int -> Int
def plus_one(x): return x + 1
def minus_one(x): return x - 1
def times_two(x): return x * 2
def neg(x): return x * (-1)
def div_two(x): return int(x/2)
def sq(x): return x**2
def times_three(x): return x * 3
def div_three(x): return int(x/3)
def times_four(x): return x * 4
def div_four(x): return int(x/4)
# Int -> Bool
def pos(x): return x > 0
def neg(x): return x < 0
def even(x): return x%2 == 0
def odd(x): return x%2 == 1
# Int -> Int -> Int
def add(x, y): return x + y
def sub(x, y): return x - y
def mul(x, y): return x * y
# HOFs
f_map = Function("map", [ListType("Int")],
ListType("Int"),
[FunctionType(["Int", "Int"])])
f_filter = Function("filter", [ListType("Int")],
ListType("Int"),
[FunctionType(["Int", "Bool"])])
f_count = Function("c_count", [ListType("Int")],
"Int",
[FunctionType(["Int", "Bool"])])
def c_count(f, xs): return len([x for x in xs if f(x)])
f_zipwith = Function("c_zipwith", [ListType("Int"), ListType("Int")],
ListType("Int"),
[FunctionType(["Int", "Int", "Int"])]) #FIX
def c_zipwith(f, xs, ys): return [f(x, y) for (x, y) in zip(xs, ys)]
f_scan = Function("c_scan", [ListType("Int")],
ListType("Int"),
[FunctionType(["Int", "Int", "Int"])])
def c_scan(f, xs):
out = xs
for i in range(1, len(xs)):
out[i] = f(xs[i], xs[i -1])
return out
@contextlib.contextmanager
def stdoutIO(stdout=None):
old = sys.stdout
if stdout is None:
stdout = StringIO.StringIO()
sys.stdout = stdout
yield stdout
sys.stdout = old
def evaluate(program_str, input_names_to_vals, default="ERROR"):
exec_str = []
for name, val in input_names_to_vals.iteritems():
exec_str += name + " = " + str(val) + "; "
exec_str += program_str
if type(exec_str) is list:
exec_str = "".join(exec_str)
with stdoutIO() as s:
# pylint: disable=bare-except
try:
exec exec_str + " print(out)"
return s.getvalue()[:-1]
except:
return default
# pylint: enable=bare-except
class Statement(object):
"""Statement class."""
def __init__(self, fn, output_var, arg_vars, fn_args=None):
self.fn = fn
self.output_var = output_var
self.arg_vars = arg_vars
self.fn_args = fn_args or []
def __str__(self):
return "%s = %s(%s%s%s)"%(self.output_var,
self.fn.name,
", ".join(self.fn_args),
", " if self.fn_args else "",
", ".join(self.arg_vars))
def substitute(self, env):
self.output_var = env.get(self.output_var, self.output_var)
self.arg_vars = [env.get(v, v) for v in self.arg_vars]
class ProgramGrower(object):
"""Grow programs."""
def __init__(self, functions, types_to_lambdas):
self.functions = functions
self.types_to_lambdas = types_to_lambdas
def grow_body(self, new_var_name, dependencies, types_to_vars):
"""Grow the program body."""
choices = []
for f in self.functions:
if all([a in types_to_vars.keys() for a in f.arg_types]):
choices.append(f)
f = random.choice(choices)
args = []
for t in f.arg_types:
possible_vars = random.choice(types_to_vars[t])
var = random.choice(possible_vars)
args.append(var)
dependencies.setdefault(new_var_name, []).extend(
[var] + (dependencies[var]))
fn_args = [random.choice(self.types_to_lambdas[t]) for t in f.fn_arg_types]
types_to_vars.setdefault(f.output_type, []).append(new_var_name)
return Statement(f, new_var_name, args, fn_args)
def grow(self, program_len, input_types):
"""Grow the program."""
var_names = list(reversed(map(chr, range(97, 123))))
dependencies = dict()
types_to_vars = dict()
input_names = []
for t in input_types:
var = var_names.pop()
dependencies[var] = []
types_to_vars.setdefault(t, []).append(var)
input_names.append(var)
statements = []
for _ in range(program_len - 1):
var = var_names.pop()
statements.append(self.grow_body(var, dependencies, types_to_vars))
statements.append(self.grow_body("out", dependencies, types_to_vars))
new_var_names = [c for c in map(chr, range(97, 123))
if c not in input_names]
new_var_names.reverse()
keep_statements = []
env = dict()
for s in statements:
if s.output_var in dependencies["out"]:
keep_statements.append(s)
env[s.output_var] = new_var_names.pop()
if s.output_var == "out":
keep_statements.append(s)
for k in keep_statements:
k.substitute(env)
return Program(input_names, input_types, ";".join(
[str(k) for k in keep_statements]))
class Program(object):
"""The program class."""
def __init__(self, input_names, input_types, body):
self.input_names = input_names
self.input_types = input_types
self.body = body
def evaluate(self, inputs):
"""Evaluate this program."""
if len(inputs) != len(self.input_names):
raise AssertionError("inputs and input_names have to"
"have the same len. inp: %s , names: %s" %
(str(inputs), str(self.input_names)))
inp_str = ""
for (name, inp) in zip(self.input_names, inputs):
inp_str += name + " = " + str(inp) + "; "
with stdoutIO() as s:
# pylint: disable=exec-used
exec inp_str + self.body + "; print(out)"
# pylint: enable=exec-used
return s.getvalue()[:-1]
def flat_str(self):
out = ""
for s in self.body.split(";"):
out += s + ";"
return out
def __str__(self):
out = ""
for (n, t) in zip(self.input_names, self.input_types):
out += n + " = " + str(t) + "\n"
for s in self.body.split(";"):
out += s + "\n"
return out
prog_vocab = []
prog_rev_vocab = {}
def tokenize(string, tokens=None):
"""Tokenize the program string."""
if tokens is None:
tokens = prog_vocab
tokens = sorted(tokens, key=len, reverse=True)
out = []
string = string.strip()
while string:
found = False
for t in tokens:
if string.startswith(t):
out.append(t)
string = string[len(t):]
found = True
break
if not found:
raise ValueError("Couldn't tokenize this: " + string)
string = string.strip()
return out
def clean_up(output, max_val=100):
o = eval(str(output))
if isinstance(o, bool):
return o
if isinstance(o, int):
if o >= 0:
return min(o, max_val)
else:
return max(o, -1 * max_val)
if isinstance(o, list):
return [clean_up(l) for l in o]
def make_vocab():
gen(2, 0)
def gen(max_len, how_many):
"""Generate some programs."""
functions = [f_head, f_last, f_take, f_drop, f_access, f_max, f_min,
f_reverse, f_sort, f_sum, f_map, f_filter, f_count, f_zipwith,
f_scan]
types_to_lambdas = {
FunctionType(["Int", "Int"]): ["plus_one", "minus_one", "times_two",
"div_two", "sq", "times_three",
"div_three", "times_four", "div_four"],
FunctionType(["Int", "Bool"]): ["pos", "neg", "even", "odd"],
FunctionType(["Int", "Int", "Int"]): ["add", "sub", "mul"]
}
tokens = []
for f in functions:
tokens.append(f.name)
for v in types_to_lambdas.values():
tokens.extend(v)
tokens.extend(["=", ";", ",", "(", ")", "[", "]", "Int", "out"])
tokens.extend(map(chr, range(97, 123)))
io_tokens = map(str, range(-220, 220))
if not prog_vocab:
prog_vocab.extend(["_PAD", "_EOS"] + tokens + io_tokens)
for i, t in enumerate(prog_vocab):
prog_rev_vocab[t] = i
io_tokens += [",", "[", "]", ")", "(", "None"]
grower = ProgramGrower(functions=functions,
types_to_lambdas=types_to_lambdas)
def mk_inp(l):
return [random.choice(range(-5, 5)) for _ in range(l)]
tar = [ListType("Int")]
inps = [[mk_inp(3)], [mk_inp(5)], [mk_inp(7)], [mk_inp(15)]]
save_prefix = None
outcomes_to_programs = dict()
tried = set()
counter = 0
choices = [0] if max_len == 0 else range(max_len)
while counter < 100 * how_many and len(outcomes_to_programs) < how_many:
counter += 1
length = random.choice(choices)
t = grower.grow(length, tar)
while t in tried:
length = random.choice(choices)
t = grower.grow(length, tar)
# print(t.flat_str())
tried.add(t)
outcomes = [clean_up(t.evaluate(i)) for i in inps]
outcome_str = str(zip(inps, outcomes))
if outcome_str in outcomes_to_programs:
outcomes_to_programs[outcome_str] = min(
[t.flat_str(), outcomes_to_programs[outcome_str]],
key=lambda x: len(tokenize(x, tokens)))
else:
outcomes_to_programs[outcome_str] = t.flat_str()
if counter % 5000 == 0:
print "== proggen: tried: " + str(counter)
print "== proggen: kept: " + str(len(outcomes_to_programs))
if counter % 250000 == 0 and save_prefix is not None:
print "saving..."
save_counter = 0
progfilename = os.path.join(save_prefix, "prog_" + str(counter) + ".txt")
iofilename = os.path.join(save_prefix, "io_" + str(counter) + ".txt")
prog_token_filename = os.path.join(save_prefix,
"prog_tokens_" + str(counter) + ".txt")
io_token_filename = os.path.join(save_prefix,
"io_tokens_" + str(counter) + ".txt")
with open(progfilename, "a+") as fp, \
open(iofilename, "a+") as fi, \
open(prog_token_filename, "a+") as ftp, \
open(io_token_filename, "a+") as fti:
for (o, p) in outcomes_to_programs.iteritems():
save_counter += 1
if save_counter % 500 == 0:
print "saving %d of %d" % (save_counter, len(outcomes_to_programs))
fp.write(p+"\n")
fi.write(o+"\n")
ftp.write(str(tokenize(p, tokens))+"\n")
fti.write(str(tokenize(o, io_tokens))+"\n")
return list(outcomes_to_programs.values())
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for downloading data from WMT, tokenizing, vocabularies."""
import gzip
import os
import re
import tarfile
from six.moves import urllib
import tensorflow as tf
# Special vocabulary symbols - we always put them at the start.
_PAD = b"_PAD"
_GO = b"_GO"
_EOS = b"_EOS"
_UNK = b"_CHAR_UNK"
_SPACE = b"_SPACE"
_START_VOCAB = [_PAD, _GO, _EOS, _UNK, _SPACE]
PAD_ID = 0
GO_ID = 1
EOS_ID = 2
UNK_ID = 3
SPACE_ID = 4
# Regular expressions used to tokenize.
_CHAR_MARKER = "_CHAR_"
_CHAR_MARKER_LEN = len(_CHAR_MARKER)
_SPEC_CHARS = "" + chr(226) + chr(153) + chr(128)
_PUNCTUATION = "][.,!?\"':;%$#@&*+}{|><=/^~)(_`,0123456789" + _SPEC_CHARS + "-"
_WORD_SPLIT = re.compile(b"([" + _PUNCTUATION + "])")
_OLD_WORD_SPLIT = re.compile(b"([.,!?\"':;)(])")
_DIGIT_RE = re.compile(br"\d")
# URLs for WMT data.
_WMT_ENFR_TRAIN_URL = "http://www.statmt.org/wmt10/training-giga-fren.tar"
_WMT_ENFR_DEV_URL = "http://www.statmt.org/wmt15/dev-v2.tgz"
def maybe_download(directory, filename, url):
"""Download filename from url unless it's already in directory."""
if not tf.gfile.Exists(directory):
print "Creating directory %s" % directory
os.mkdir(directory)
filepath = os.path.join(directory, filename)
if not tf.gfile.Exists(filepath):
print "Downloading %s to %s" % (url, filepath)
filepath, _ = urllib.request.urlretrieve(url, filepath)
statinfo = os.stat(filepath)
print "Succesfully downloaded", filename, statinfo.st_size, "bytes"
return filepath
def gunzip_file(gz_path, new_path):
"""Unzips from gz_path into new_path."""
print "Unpacking %s to %s" % (gz_path, new_path)
with gzip.open(gz_path, "rb") as gz_file:
with open(new_path, "wb") as new_file:
for line in gz_file:
new_file.write(line)
def get_wmt_enfr_train_set(directory):
"""Download the WMT en-fr training corpus to directory unless it's there."""
train_path = os.path.join(directory, "giga-fren.release2.fixed")
if not (tf.gfile.Exists(train_path +".fr") and
tf.gfile.Exists(train_path +".en")):
corpus_file = maybe_download(directory, "training-giga-fren.tar",
_WMT_ENFR_TRAIN_URL)
print "Extracting tar file %s" % corpus_file
with tarfile.open(corpus_file, "r") as corpus_tar:
corpus_tar.extractall(directory)
gunzip_file(train_path + ".fr.gz", train_path + ".fr")
gunzip_file(train_path + ".en.gz", train_path + ".en")
return train_path
def get_wmt_enfr_dev_set(directory):
"""Download the WMT en-fr training corpus to directory unless it's there."""
dev_name = "newstest2013"
dev_path = os.path.join(directory, dev_name)
if not (tf.gfile.Exists(dev_path + ".fr") and
tf.gfile.Exists(dev_path + ".en")):
dev_file = maybe_download(directory, "dev-v2.tgz", _WMT_ENFR_DEV_URL)
print "Extracting tgz file %s" % dev_file
with tarfile.open(dev_file, "r:gz") as dev_tar:
fr_dev_file = dev_tar.getmember("dev/" + dev_name + ".fr")
en_dev_file = dev_tar.getmember("dev/" + dev_name + ".en")
fr_dev_file.name = dev_name + ".fr" # Extract without "dev/" prefix.
en_dev_file.name = dev_name + ".en"
dev_tar.extract(fr_dev_file, directory)
dev_tar.extract(en_dev_file, directory)
return dev_path
def is_char(token):
if len(token) > _CHAR_MARKER_LEN:
if token[:_CHAR_MARKER_LEN] == _CHAR_MARKER:
return True
return False
def basic_detokenizer(tokens):
"""Reverse the process of the basic tokenizer below."""
result = []
previous_nospace = True
for t in tokens:
if is_char(t):
result.append(t[_CHAR_MARKER_LEN:])
previous_nospace = True
elif t == _SPACE:
result.append(" ")
previous_nospace = True
elif previous_nospace:
result.append(t)
previous_nospace = False
else:
result.extend([" ", t])
previous_nospace = False
return "".join(result)
old_style = False
def basic_tokenizer(sentence):
"""Very basic tokenizer: split the sentence into a list of tokens."""
words = []
if old_style:
for space_separated_fragment in sentence.strip().split():
words.extend(re.split(_OLD_WORD_SPLIT, space_separated_fragment))
return [w for w in words if w]
for space_separated_fragment in sentence.strip().split():
tokens = [t for t in re.split(_WORD_SPLIT, space_separated_fragment) if t]
first_is_char = False
for i, t in enumerate(tokens):
if len(t) == 1 and t in _PUNCTUATION:
tokens[i] = _CHAR_MARKER + t
if i == 0:
first_is_char = True
if words and words[-1] != _SPACE and (first_is_char or is_char(words[-1])):
tokens = [_SPACE] + tokens
spaced_tokens = []
for i, tok in enumerate(tokens):
spaced_tokens.append(tokens[i])
if i < len(tokens) - 1:
if tok != _SPACE and not (is_char(tok) or is_char(tokens[i+1])):
spaced_tokens.append(_SPACE)
words.extend(spaced_tokens)
return words
def space_tokenizer(sentence):
return sentence.strip().split()
def is_pos_tag(token):
"""Check if token is a part-of-speech tag."""
return(token in ["CC", "CD", "DT", "EX", "FW", "IN", "JJ", "JJR",
"JJS", "LS", "MD", "NN", "NNS", "NNP", "NNPS", "PDT",
"POS", "PRP", "PRP$", "RB", "RBR", "RBS", "RP", "SYM", "TO",
"UH", "VB", "VBD", "VBG", "VBN", "VBP", "VBZ", "WDT", "WP",
"WP$", "WRB", ".", ",", ":", ")", "-LRB-", "(", "-RRB-",
"HYPH", "$", "``", "''", "ADD", "AFX", "QTR", "BES", "-DFL-",
"GW", "HVS", "NFP"])
def parse_constraints(inpt, res):
ntags = len(res)
nwords = len(inpt)
npostags = len([x for x in res if is_pos_tag(x)])
nclose = len([x for x in res if x[0] == "/"])
nopen = ntags - nclose - npostags
return (abs(npostags - nwords), abs(nclose - nopen))
def create_vocabulary(vocabulary_path, data_path, max_vocabulary_size,
tokenizer=None, normalize_digits=False):
"""Create vocabulary file (if it does not exist yet) from data file.
Data file is assumed to contain one sentence per line. Each sentence is
tokenized and digits are normalized (if normalize_digits is set).
Vocabulary contains the most-frequent tokens up to max_vocabulary_size.
We write it to vocabulary_path in a one-token-per-line format, so that later
token in the first line gets id=0, second line gets id=1, and so on.
Args:
vocabulary_path: path where the vocabulary will be created.
data_path: data file that will be used to create vocabulary.
max_vocabulary_size: limit on the size of the created vocabulary.
tokenizer: a function to use to tokenize each data sentence;
if None, basic_tokenizer will be used.
normalize_digits: Boolean; if true, all digits are replaced by 0s.
"""
if not tf.gfile.Exists(vocabulary_path):
print "Creating vocabulary %s from data %s" % (vocabulary_path, data_path)
vocab, chars = {}, {}
for c in _PUNCTUATION:
chars[c] = 1
# Read French file.
with tf.gfile.GFile(data_path + ".fr", mode="rb") as f:
counter = 0
for line_in in f:
line = " ".join(line_in.split())
counter += 1
if counter % 100000 == 0:
print " processing fr line %d" % counter
for c in line:
if c in chars:
chars[c] += 1
else:
chars[c] = 1
tokens = tokenizer(line) if tokenizer else basic_tokenizer(line)
tokens = [t for t in tokens if not is_char(t) and t != _SPACE]
for w in tokens:
word = re.sub(_DIGIT_RE, b"0", w) if normalize_digits else w
if word in vocab:
vocab[word] += 1000000000 # We want target words first.
else:
vocab[word] = 1000000000
# Read English file.
with tf.gfile.GFile(data_path + ".en", mode="rb") as f:
counter = 0
for line_in in f:
line = " ".join(line_in.split())
counter += 1
if counter % 100000 == 0:
print " processing en line %d" % counter
for c in line:
if c in chars:
chars[c] += 1
else:
chars[c] = 1
tokens = tokenizer(line) if tokenizer else basic_tokenizer(line)
tokens = [t for t in tokens if not is_char(t) and t != _SPACE]
for w in tokens:
word = re.sub(_DIGIT_RE, b"0", w) if normalize_digits else w
if word in vocab:
vocab[word] += 1
else:
vocab[word] = 1
sorted_vocab = sorted(vocab, key=vocab.get, reverse=True)
sorted_chars = sorted(chars, key=vocab.get, reverse=True)
sorted_chars = [_CHAR_MARKER + c for c in sorted_chars]
vocab_list = _START_VOCAB + sorted_chars + sorted_vocab
if tokenizer:
vocab_list = _START_VOCAB + sorted_vocab
if len(vocab_list) > max_vocabulary_size:
vocab_list = vocab_list[:max_vocabulary_size]
with tf.gfile.GFile(vocabulary_path, mode="wb") as vocab_file:
for w in vocab_list:
vocab_file.write(w + b"\n")
def initialize_vocabulary(vocabulary_path):
"""Initialize vocabulary from file.
We assume the vocabulary is stored one-item-per-line, so a file:
dog
cat
will result in a vocabulary {"dog": 0, "cat": 1}, and this function will
also return the reversed-vocabulary ["dog", "cat"].
Args:
vocabulary_path: path to the file containing the vocabulary.
Returns:
a pair: the vocabulary (a dictionary mapping string to integers), and
the reversed vocabulary (a list, which reverses the vocabulary mapping).
Raises:
ValueError: if the provided vocabulary_path does not exist.
"""
if tf.gfile.Exists(vocabulary_path):
rev_vocab = []
with tf.gfile.GFile(vocabulary_path, mode="rb") as f:
rev_vocab.extend(f.readlines())
rev_vocab = [line.strip() for line in rev_vocab]
vocab = dict([(x, y) for (y, x) in enumerate(rev_vocab)])
return vocab, rev_vocab
else:
raise ValueError("Vocabulary file %s not found.", vocabulary_path)
def sentence_to_token_ids_raw(sentence, vocabulary,
tokenizer=None, normalize_digits=old_style):
"""Convert a string to list of integers representing token-ids.
For example, a sentence "I have a dog" may become tokenized into
["I", "have", "a", "dog"] and with vocabulary {"I": 1, "have": 2,
"a": 4, "dog": 7"} this function will return [1, 2, 4, 7].
Args:
sentence: the sentence in bytes format to convert to token-ids.
vocabulary: a dictionary mapping tokens to integers.
tokenizer: a function to use to tokenize each sentence;
if None, basic_tokenizer will be used.
normalize_digits: Boolean; if true, all digits are replaced by 0s.
Returns:
a list of integers, the token-ids for the sentence.
"""
if tokenizer:
words = tokenizer(sentence)
else:
words = basic_tokenizer(sentence)
result = []
for w in words:
if normalize_digits:
w = re.sub(_DIGIT_RE, b"0", w)
if w in vocabulary:
result.append(vocabulary[w])
else:
if tokenizer:
result.append(UNK_ID)
else:
result.append(SPACE_ID)
for c in w:
result.append(vocabulary.get(_CHAR_MARKER + c, UNK_ID))
result.append(SPACE_ID)
while result and result[0] == SPACE_ID:
result = result[1:]
while result and result[-1] == SPACE_ID:
result = result[:-1]
return result
def sentence_to_token_ids(sentence, vocabulary,
tokenizer=None, normalize_digits=old_style):
"""Convert a string to list of integers representing token-ids, tab=0."""
tab_parts = sentence.strip().split("\t")
toks = [sentence_to_token_ids_raw(t, vocabulary, tokenizer, normalize_digits)
for t in tab_parts]
res = []
for t in toks:
res.extend(t)
res.append(0)
return res[:-1]
def data_to_token_ids(data_path, target_path, vocabulary_path,
tokenizer=None, normalize_digits=False):
"""Tokenize data file and turn into token-ids using given vocabulary file.
This function loads data line-by-line from data_path, calls the above
sentence_to_token_ids, and saves the result to target_path. See comment
for sentence_to_token_ids on the details of token-ids format.
Args:
data_path: path to the data file in one-sentence-per-line format.
target_path: path where the file with token-ids will be created.
vocabulary_path: path to the vocabulary file.
tokenizer: a function to use to tokenize each sentence;
if None, basic_tokenizer will be used.
normalize_digits: Boolean; if true, all digits are replaced by 0s.
"""
if not tf.gfile.Exists(target_path):
print "Tokenizing data in %s" % data_path
vocab, _ = initialize_vocabulary(vocabulary_path)
with tf.gfile.GFile(data_path, mode="rb") as data_file:
with tf.gfile.GFile(target_path, mode="w") as tokens_file:
counter = 0
for line in data_file:
counter += 1
if counter % 100000 == 0:
print " tokenizing line %d" % counter
token_ids = sentence_to_token_ids(line, vocab, tokenizer,
normalize_digits)
tokens_file.write(" ".join([str(tok) for tok in token_ids]) + "\n")
def prepare_wmt_data(data_dir, vocabulary_size,
tokenizer=None, normalize_digits=False):
"""Get WMT data into data_dir, create vocabularies and tokenize data.
Args:
data_dir: directory in which the data sets will be stored.
vocabulary_size: size of the joint vocabulary to create and use.
tokenizer: a function to use to tokenize each data sentence;
if None, basic_tokenizer will be used.
normalize_digits: Boolean; if true, all digits are replaced by 0s.
Returns:
A tuple of 6 elements:
(1) path to the token-ids for English training data-set,
(2) path to the token-ids for French training data-set,
(3) path to the token-ids for English development data-set,
(4) path to the token-ids for French development data-set,
(5) path to the vocabulary file,
(6) path to the vocabulary file (for compatibility with non-joint vocab).
"""
# Get wmt data to the specified directory.
train_path = get_wmt_enfr_train_set(data_dir)
dev_path = get_wmt_enfr_dev_set(data_dir)
# Create vocabularies of the appropriate sizes.
vocab_path = os.path.join(data_dir, "vocab%d.txt" % vocabulary_size)
create_vocabulary(vocab_path, train_path, vocabulary_size,
tokenizer=tokenizer, normalize_digits=normalize_digits)
# Create token ids for the training data.
fr_train_ids_path = train_path + (".ids%d.fr" % vocabulary_size)
en_train_ids_path = train_path + (".ids%d.en" % vocabulary_size)
data_to_token_ids(train_path + ".fr", fr_train_ids_path, vocab_path,
tokenizer=tokenizer, normalize_digits=normalize_digits)
data_to_token_ids(train_path + ".en", en_train_ids_path, vocab_path,
tokenizer=tokenizer, normalize_digits=normalize_digits)
# Create token ids for the development data.
fr_dev_ids_path = dev_path + (".ids%d.fr" % vocabulary_size)
en_dev_ids_path = dev_path + (".ids%d.en" % vocabulary_size)
data_to_token_ids(dev_path + ".fr", fr_dev_ids_path, vocab_path,
tokenizer=tokenizer, normalize_digits=normalize_digits)
data_to_token_ids(dev_path + ".en", en_dev_ids_path, vocab_path,
tokenizer=tokenizer, normalize_digits=normalize_digits)
return (en_train_ids_path, fr_train_ids_path,
en_dev_ids_path, fr_dev_ids_path,
vocab_path, vocab_path)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment