Commit a0dd0e8a authored by anivegesana's avatar anivegesana
Browse files

Reorganize unit tests

parent 37434ecb
...@@ -22,7 +22,7 @@ import tensorflow as tf ...@@ -22,7 +22,7 @@ import tensorflow as tf
from tensorflow.python.distribute import combinations from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import strategy_combinations from tensorflow.python.distribute import strategy_combinations
from official.vision.beta.projects.yolo.modeling.backbones import Darknet from official.vision.beta.projects.yolo.modeling.backbones import darknet
class DarkNetTest(parameterized.TestCase, tf.test.TestCase): class DarkNetTest(parameterized.TestCase, tf.test.TestCase):
...@@ -37,8 +37,7 @@ class DarkNetTest(parameterized.TestCase, tf.test.TestCase): ...@@ -37,8 +37,7 @@ class DarkNetTest(parameterized.TestCase, tf.test.TestCase):
"""Test creation of ResNet family models.""" """Test creation of ResNet family models."""
tf.keras.backend.set_image_data_format('channels_last') tf.keras.backend.set_image_data_format('channels_last')
network = Darknet.Darknet(model_id=model_id, min_level=3, max_level=5) network = darknet.Darknet(model_id=model_id, min_level=3, max_level=5)
print(network.model_id)
self.assertEqual(network.model_id, model_id) self.assertEqual(network.model_id, model_id)
inputs = tf.keras.Input(shape=(input_size, input_size, 3), batch_size=1) inputs = tf.keras.Input(shape=(input_size, input_size, 3), batch_size=1)
...@@ -70,7 +69,7 @@ class DarkNetTest(parameterized.TestCase, tf.test.TestCase): ...@@ -70,7 +69,7 @@ class DarkNetTest(parameterized.TestCase, tf.test.TestCase):
tf.keras.backend.set_image_data_format('channels_last') tf.keras.backend.set_image_data_format('channels_last')
with strategy.scope(): with strategy.scope():
network = Darknet.Darknet(model_id="darknet53", min_size=3, max_size=5) network = darknet.Darknet(model_id="darknet53", min_size=3, max_size=5)
_ = network(inputs) _ = network(inputs)
@parameterized.parameters(1, 3, 4) @parameterized.parameters(1, 3, 4)
...@@ -79,7 +78,7 @@ class DarkNetTest(parameterized.TestCase, tf.test.TestCase): ...@@ -79,7 +78,7 @@ class DarkNetTest(parameterized.TestCase, tf.test.TestCase):
tf.keras.backend.set_image_data_format('channels_last') tf.keras.backend.set_image_data_format('channels_last')
input_specs = tf.keras.layers.InputSpec(shape=[None, None, None, input_dim]) input_specs = tf.keras.layers.InputSpec(shape=[None, None, None, input_dim])
network = Darknet.Darknet(model_id="darknet53", min_level=3, max_level=5, input_specs=input_specs) network = darknet.Darknet(model_id="darknet53", min_level=3, max_level=5, input_specs=input_specs)
inputs = tf.keras.Input(shape=(224, 224, input_dim), batch_size=1) inputs = tf.keras.Input(shape=(224, 224, input_dim), batch_size=1)
_ = network(inputs) _ = network(inputs)
...@@ -88,8 +87,8 @@ class DarkNetTest(parameterized.TestCase, tf.test.TestCase): ...@@ -88,8 +87,8 @@ class DarkNetTest(parameterized.TestCase, tf.test.TestCase):
# Create a network object that sets all of its config options. # Create a network object that sets all of its config options.
kwargs = dict( kwargs = dict(
model_id="darknet53", model_id="darknet53",
min_level = 3, min_level = 3,
max_level = 5, max_level = 5,
use_sync_bn=False, use_sync_bn=False,
activation='relu', activation='relu',
norm_momentum=0.99, norm_momentum=0.99,
...@@ -98,13 +97,13 @@ class DarkNetTest(parameterized.TestCase, tf.test.TestCase): ...@@ -98,13 +97,13 @@ class DarkNetTest(parameterized.TestCase, tf.test.TestCase):
kernel_regularizer=None, kernel_regularizer=None,
bias_regularizer=None, bias_regularizer=None,
) )
network = Darknet.Darknet(**kwargs) network = darknet.Darknet(**kwargs)
expected_config = dict(kwargs) expected_config = dict(kwargs)
self.assertEqual(network.get_config(), expected_config) self.assertEqual(network.get_config(), expected_config)
# Create another network object from the first object's config. # Create another network object from the first object's config.
new_network = Darknet.Darknet.from_config(network.get_config()) new_network = darknet.Darknet.from_config(network.get_config())
# Validate that the config can be forced to JSON. # Validate that the config can be forced to JSON.
_ = new_network.to_json() _ = new_network.to_json()
......
import tensorflow as tf import tensorflow as tf
import tensorflow.keras as ks import tensorflow.keras as ks
from ._DarkConv import DarkConv from .dark_conv import DarkConv
@ks.utils.register_keras_serializable(package='yolo') @ks.utils.register_keras_serializable(package='yolo')
......
import tensorflow as tf import tensorflow as tf
import tensorflow.keras as ks import tensorflow.keras as ks
from ._DarkConv import DarkConv from .dark_conv import DarkConv
@ks.utils.register_keras_serializable(package='yolo') @ks.utils.register_keras_serializable(package='yolo')
......
"""Contains common building blocks for yolo neural networks.""" """Contains common building blocks for yolo neural networks."""
import tensorflow as tf import tensorflow as tf
import tensorflow.keras as ks import tensorflow.keras as ks
from ._DarkConv import DarkConv from .dark_conv import DarkConv
@ks.utils.register_keras_serializable(package='yolo') @ks.utils.register_keras_serializable(package='yolo')
......
...@@ -4,7 +4,7 @@ from functools import partial ...@@ -4,7 +4,7 @@ from functools import partial
import tensorflow as tf import tensorflow as tf
import tensorflow.keras as ks import tensorflow.keras as ks
import tensorflow.keras.backend as K import tensorflow.keras.backend as K
from ._Identity import Identity from .identity import Identity
from official.vision.beta.projects.yolo.modeling.functions.mish_activation import mish from official.vision.beta.projects.yolo.modeling.functions.mish_activation import mish
......
"""Contains common building blocks for yolo neural networks.""" """Contains common building blocks for yolo neural networks."""
import tensorflow as tf import tensorflow as tf
import tensorflow.keras as ks import tensorflow.keras as ks
from ._DarkConv import DarkConv from .dark_conv import DarkConv
from ._Identity import Identity from .identity import Identity
@ks.utils.register_keras_serializable(package='yolo') @ks.utils.register_keras_serializable(package='yolo')
......
"""Contains common building blocks for yolo neural networks.""" """Contains common building blocks for yolo neural networks."""
import tensorflow as tf import tensorflow as tf
import tensorflow.keras as ks import tensorflow.keras as ks
from ._DarkConv import DarkConv from .dark_conv import DarkConv
@ks.utils.register_keras_serializable(package='yolo') @ks.utils.register_keras_serializable(package='yolo')
......
...@@ -14,8 +14,6 @@ class DarkTinyTest(tf.test.TestCase, parameterized.TestCase): ...@@ -14,8 +14,6 @@ class DarkTinyTest(tf.test.TestCase, parameterized.TestCase):
x = ks.Input(shape=(width, height, filters)) x = ks.Input(shape=(width, height, filters))
test_layer = DarkTiny(filters=filters, strides=strides) test_layer = DarkTiny(filters=filters, strides=strides)
outx = test_layer(x) outx = test_layer(x)
print(outx)
print(outx.shape.as_list())
self.assertEqual(width % strides, 0, msg="width % strides != 0") self.assertEqual(width % strides, 0, msg="width % strides != 0")
self.assertEqual(height % strides, 0, msg="height % strides != 0") self.assertEqual(height % strides, 0, msg="height % strides != 0")
self.assertAllEqual(outx.shape.as_list(), self.assertAllEqual(outx.shape.as_list(),
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment