Commit 9fd17d8c authored by Hongkun Yu's avatar Hongkun Yu Committed by A. Unique TensorFlower
Browse files

auto formatting: remove tailing white space etc.

PiperOrigin-RevId: 269653296
parent f66efa5d
...@@ -28,7 +28,6 @@ from official.resnet.ctl import ctl_common ...@@ -28,7 +28,6 @@ from official.resnet.ctl import ctl_common
from official.utils.testing.perfzero_benchmark import PerfZeroBenchmark from official.utils.testing.perfzero_benchmark import PerfZeroBenchmark
from official.utils.flags import core as flags_core from official.utils.flags import core as flags_core
MIN_TOP_1_ACCURACY = 0.76 MIN_TOP_1_ACCURACY = 0.76
MAX_TOP_1_ACCURACY = 0.77 MAX_TOP_1_ACCURACY = 0.77
...@@ -69,17 +68,19 @@ class CtlBenchmark(PerfZeroBenchmark): ...@@ -69,17 +68,19 @@ class CtlBenchmark(PerfZeroBenchmark):
metrics = [] metrics = []
if 'eval_acc' in stats: if 'eval_acc' in stats:
metrics.append({'name': 'accuracy_top_1', metrics.append({
'value': stats['eval_acc'], 'name': 'accuracy_top_1',
'min_value': top_1_min, 'value': stats['eval_acc'],
'max_value': top_1_max}) 'min_value': top_1_min,
metrics.append({'name': 'eval_loss', 'max_value': top_1_max
'value': stats['eval_loss']}) })
metrics.append({'name': 'eval_loss', 'value': stats['eval_loss']})
metrics.append({'name': 'top_1_train_accuracy',
'value': stats['train_acc']}) metrics.append({
metrics.append({'name': 'train_loss', 'name': 'top_1_train_accuracy',
'value': stats['train_loss']}) 'value': stats['train_acc']
})
metrics.append({'name': 'train_loss', 'value': stats['train_loss']})
if (warmup and 'step_timestamp_log' in stats and if (warmup and 'step_timestamp_log' in stats and
len(stats['step_timestamp_log']) > warmup): len(stats['step_timestamp_log']) > warmup):
...@@ -90,16 +91,20 @@ class CtlBenchmark(PerfZeroBenchmark): ...@@ -90,16 +91,20 @@ class CtlBenchmark(PerfZeroBenchmark):
num_examples = ( num_examples = (
total_batch_size * log_steps * (len(time_log) - warmup - 1)) total_batch_size * log_steps * (len(time_log) - warmup - 1))
examples_per_sec = num_examples / elapsed examples_per_sec = num_examples / elapsed
metrics.append({'name': 'exp_per_second', metrics.append({'name': 'exp_per_second', 'value': examples_per_sec})
'value': examples_per_sec})
if 'avg_exp_per_second' in stats: if 'avg_exp_per_second' in stats:
metrics.append({'name': 'avg_exp_per_second', metrics.append({
'value': stats['avg_exp_per_second']}) 'name': 'avg_exp_per_second',
'value': stats['avg_exp_per_second']
})
flags_str = flags_core.get_nondefault_flags_as_str() flags_str = flags_core.get_nondefault_flags_as_str()
self.report_benchmark(iters=-1, wall_time=wall_time_sec, metrics=metrics, self.report_benchmark(
extras={'flags': flags_str}) iters=-1,
wall_time=wall_time_sec,
metrics=metrics,
extras={'flags': flags_str})
class Resnet50CtlAccuracy(CtlBenchmark): class Resnet50CtlAccuracy(CtlBenchmark):
...@@ -112,16 +117,14 @@ class Resnet50CtlAccuracy(CtlBenchmark): ...@@ -112,16 +117,14 @@ class Resnet50CtlAccuracy(CtlBenchmark):
output_dir: directory where to output e.g. log files output_dir: directory where to output e.g. log files
root_data_dir: directory under which to look for dataset root_data_dir: directory under which to look for dataset
**kwargs: arbitrary named arguments. This is needed to make the **kwargs: arbitrary named arguments. This is needed to make the
constructor forward compatible in case PerfZero provides more constructor forward compatible in case PerfZero provides more named
named arguments before updating the constructor. arguments before updating the constructor.
""" """
flag_methods = [ flag_methods = [ctl_common.define_ctl_flags, common.define_keras_flags]
ctl_common.define_ctl_flags,
common.define_keras_flags
]
self.data_dir = os.path.join(root_data_dir, 'imagenet') self.data_dir = ('/readahead/200M/placer/prod/home/distbelief/'
'imagenet-tensorflow/imagenet-2012-tfrecord')
super(Resnet50CtlAccuracy, self).__init__( super(Resnet50CtlAccuracy, self).__init__(
output_dir=output_dir, flag_methods=flag_methods) output_dir=output_dir, flag_methods=flag_methods)
...@@ -175,10 +178,7 @@ class Resnet50CtlBenchmarkBase(CtlBenchmark): ...@@ -175,10 +178,7 @@ class Resnet50CtlBenchmarkBase(CtlBenchmark):
"""Resnet50 benchmarks.""" """Resnet50 benchmarks."""
def __init__(self, output_dir=None, default_flags=None): def __init__(self, output_dir=None, default_flags=None):
flag_methods = [ flag_methods = [ctl_common.define_ctl_flags, common.define_keras_flags]
ctl_common.define_ctl_flags,
common.define_keras_flags
]
super(Resnet50CtlBenchmarkBase, self).__init__( super(Resnet50CtlBenchmarkBase, self).__init__(
output_dir=output_dir, output_dir=output_dir,
...@@ -228,7 +228,7 @@ class Resnet50CtlBenchmarkBase(CtlBenchmark): ...@@ -228,7 +228,7 @@ class Resnet50CtlBenchmarkBase(CtlBenchmark):
FLAGS.num_gpus = 1 FLAGS.num_gpus = 1
FLAGS.distribution_strategy = 'default' FLAGS.distribution_strategy = 'default'
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp') FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp')
FLAGS.batch_size = 256 FLAGS.batch_size = 256
FLAGS.dtype = 'fp16' FLAGS.dtype = 'fp16'
FLAGS.fp16_implementation = 'graph_rewrite' FLAGS.fp16_implementation = 'graph_rewrite'
self._run_and_report_benchmark() self._run_and_report_benchmark()
...@@ -240,7 +240,7 @@ class Resnet50CtlBenchmarkBase(CtlBenchmark): ...@@ -240,7 +240,7 @@ class Resnet50CtlBenchmarkBase(CtlBenchmark):
FLAGS.num_gpus = 1 FLAGS.num_gpus = 1
FLAGS.distribution_strategy = 'default' FLAGS.distribution_strategy = 'default'
FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_amp') FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_amp')
FLAGS.batch_size = 256 FLAGS.batch_size = 256
FLAGS.dtype = 'fp16' FLAGS.dtype = 'fp16'
FLAGS.fp16_implementation = 'graph_rewrite' FLAGS.fp16_implementation = 'graph_rewrite'
FLAGS.enable_xla = True FLAGS.enable_xla = True
...@@ -295,9 +295,7 @@ class Resnet50CtlBenchmarkBase(CtlBenchmark): ...@@ -295,9 +295,7 @@ class Resnet50CtlBenchmarkBase(CtlBenchmark):
def fill_report_object(self, stats): def fill_report_object(self, stats):
super(Resnet50CtlBenchmarkBase, self).fill_report_object( super(Resnet50CtlBenchmarkBase, self).fill_report_object(
stats, stats, total_batch_size=FLAGS.batch_size, log_steps=FLAGS.log_steps)
total_batch_size=FLAGS.batch_size,
log_steps=FLAGS.log_steps)
class Resnet50CtlBenchmarkSynth(Resnet50CtlBenchmarkBase): class Resnet50CtlBenchmarkSynth(Resnet50CtlBenchmarkBase):
...@@ -320,12 +318,14 @@ class Resnet50CtlBenchmarkReal(Resnet50CtlBenchmarkBase): ...@@ -320,12 +318,14 @@ class Resnet50CtlBenchmarkReal(Resnet50CtlBenchmarkBase):
def __init__(self, output_dir=None, root_data_dir=None, **kwargs): def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
def_flags = {} def_flags = {}
def_flags['skip_eval'] = True def_flags['skip_eval'] = True
def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet') def_flags['data_dir'] = ('/readahead/200M/placer/prod/home/distbelief/'
'imagenet-tensorflow/imagenet-2012-tfrecord')
def_flags['train_steps'] = 110 def_flags['train_steps'] = 110
def_flags['log_steps'] = 10 def_flags['log_steps'] = 10
super(Resnet50CtlBenchmarkReal, self).__init__( super(Resnet50CtlBenchmarkReal, self).__init__(
output_dir=output_dir, default_flags=def_flags) output_dir=output_dir, default_flags=def_flags)
if __name__ == '__main__': if __name__ == '__main__':
tf.test.main() tf.test.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment