"tests/git@developer.sourcefind.cn:OpenDAS/fairscale.git" did not exist on "e14cca4421e7fc2c6b5553c705076c3fe01f9ff4"
Commit 95d8a879 authored by syiming's avatar syiming
Browse files

change resnetFPN as an internal class

parent 3e73c76c
...@@ -32,7 +32,7 @@ _RESNET_MODEL_OUTPUT_LAYERS = { ...@@ -32,7 +32,7 @@ _RESNET_MODEL_OUTPUT_LAYERS = {
'conv4_block36_out', 'conv5_block3_out'], 'conv4_block36_out', 'conv5_block3_out'],
} }
class ResnetFPN(tf.keras.layers.Layer): class _ResnetFPN(tf.keras.layers.Layer):
"""Construct Resnet FPN layer.""" """Construct Resnet FPN layer."""
def __init__(self, def __init__(self,
...@@ -56,7 +56,7 @@ class ResnetFPN(tf.keras.layers.Layer): ...@@ -56,7 +56,7 @@ class ResnetFPN(tf.keras.layers.Layer):
resnet_block_names: a list of block names of resnet. resnet_block_names: a list of block names of resnet.
base_fpn_max_level: maximum level of fpn without coarse feature layers. base_fpn_max_level: maximum level of fpn without coarse feature layers.
""" """
super(ResnetFPN, self).__init__() super(_ResnetFPN, self).__init__()
self.classification_backbone = backbone_classifier self.classification_backbone = backbone_classifier
self.fpn_features_generator = fpn_features_generator self.fpn_features_generator = fpn_features_generator
self.coarse_feature_layers = coarse_feature_layers self.coarse_feature_layers = coarse_feature_layers
...@@ -66,7 +66,7 @@ class ResnetFPN(tf.keras.layers.Layer): ...@@ -66,7 +66,7 @@ class ResnetFPN(tf.keras.layers.Layer):
self._base_fpn_max_level = base_fpn_max_level self._base_fpn_max_level = base_fpn_max_level
def call(self, inputs): def call(self, inputs):
"""Create ResnetFPN layer. """Create internal ResnetFPN layer.
Args: Args:
inputs: A [batch, height_out, width_out, channels] float32 tensor inputs: A [batch, height_out, width_out, channels] float32 tensor
...@@ -261,7 +261,7 @@ class FasterRCNNResnetV1FpnKerasFeatureExtractor( ...@@ -261,7 +261,7 @@ class FasterRCNNResnetV1FpnKerasFeatureExtractor(
name=layer_name)) name=layer_name))
self._coarse_feature_layers.append(layers) self._coarse_feature_layers.append(layers)
feature_extractor_model = ResnetFPN(self.classification_backbone, feature_extractor_model = _ResnetFPN(self.classification_backbone,
self._fpn_features_generator, self._fpn_features_generator,
self._coarse_feature_layers, self._coarse_feature_layers,
self._pad_to_multiple, self._pad_to_multiple,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment