Commit 91ccdb45 authored by Hongkun Yu's avatar Hongkun Yu Committed by A. Unique TensorFlower
Browse files

Internal change

PiperOrigin-RevId: 333019996
parent 8d11ee24
......@@ -28,6 +28,7 @@ from official.modeling import hyperparams
from official.modeling import tf_utils
from official.nlp import keras_nlp
from official.nlp.modeling import networks
from official.nlp.projects.bigbird import encoder as bigbird_encoder
@dataclasses.dataclass
......@@ -60,18 +61,18 @@ class MobileBertEncoderConfig(hyperparams.Config):
num_blocks: number of transformer block in the encoder model.
hidden_size: the hidden size for the transformer block.
num_attention_heads: number of attention heads in the transformer block.
intermediate_size: the size of the "intermediate" (a.k.a., feed
forward) layer.
intermediate_act_fn: the non-linear activation function to apply
to the output of the intermediate/feed-forward layer.
intermediate_size: the size of the "intermediate" (a.k.a., feed forward)
layer.
intermediate_act_fn: the non-linear activation function to apply to the
output of the intermediate/feed-forward layer.
hidden_dropout_prob: dropout probability for the hidden layers.
attention_probs_dropout_prob: dropout probability of the attention
probabilities.
intra_bottleneck_size: the size of bottleneck.
initializer_range: The stddev of the truncated_normal_initializer for
initializing all weight matrices.
key_query_shared_bottleneck: whether to share linear transformation for
keys and queries.
initializing all weight matrices.
key_query_shared_bottleneck: whether to share linear transformation for keys
and queries.
num_feedforward_networks: number of stacked feed-forward networks.
normalization_type: the type of normalization_type, only 'no_norm' and
'layer_norm' are supported. 'no_norm' represents the element-wise linear
......@@ -116,12 +117,32 @@ class AlbertEncoderConfig(hyperparams.Config):
initializer_range: float = 0.02
@dataclasses.dataclass
class BigBirdEncoderConfig(hyperparams.Config):
"""BigBird encoder configuration."""
vocab_size: int = 50358
hidden_size: int = 768
num_layers: int = 12
num_attention_heads: int = 12
hidden_activation: str = "gelu"
intermediate_size: int = 3072
dropout_rate: float = 0.1
attention_dropout_rate: float = 0.1
max_position_embeddings: int = 4096
num_rand_blocks: int = 3
block_size: int = 64
type_vocab_size: int = 16
initializer_range: float = 0.02
embedding_size: Optional[int] = None
@dataclasses.dataclass
class EncoderConfig(hyperparams.OneOfConfig):
"""Encoder configuration."""
type: Optional[str] = "bert"
albert: AlbertEncoderConfig = AlbertEncoderConfig()
bert: BertEncoderConfig = BertEncoderConfig()
bigbird: BigBirdEncoderConfig = BigBirdEncoderConfig()
mobilebert: MobileBertEncoderConfig = MobileBertEncoderConfig()
......@@ -129,6 +150,7 @@ ENCODER_CLS = {
"bert": networks.BertEncoder,
"mobilebert": networks.MobileBERTEncoder,
"albert": networks.AlbertTransformerEncoder,
"bigbird": bigbird_encoder.BigBirdEncoder,
}
......@@ -226,6 +248,24 @@ def build_encoder(
stddev=encoder_cfg.initializer_range),
dict_outputs=True)
if encoder_type == "bigbird":
return encoder_cls(
vocab_size=encoder_cfg.vocab_size,
hidden_size=encoder_cfg.hidden_size,
num_layers=encoder_cfg.num_layers,
num_attention_heads=encoder_cfg.num_attention_heads,
intermediate_size=encoder_cfg.intermediate_size,
activation=tf_utils.get_activation(encoder_cfg.hidden_activation),
dropout_rate=encoder_cfg.dropout_rate,
attention_dropout_rate=encoder_cfg.attention_dropout_rate,
num_rand_blocks=encoder_cfg.num_rand_blocks,
block_size=encoder_cfg.block_size,
max_sequence_length=encoder_cfg.max_position_embeddings,
type_vocab_size=encoder_cfg.type_vocab_size,
initializer=tf.keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
embedding_width=encoder_cfg.embedding_size)
# Uses the default BERTEncoder configuration schema to create the encoder.
# If it does not match, please add a switch branch by the encoder type.
return encoder_cls(
......
This diff is collapsed.
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for official.nlp.projects.bigbird.attention."""
import tensorflow as tf
from official.nlp.projects.bigbird import attention
class BigbirdAttentionTest(tf.test.TestCase):
def test_attention(self):
num_heads = 12
key_dim = 64
seq_length = 1024
batch_size = 2
block_size = 64
mask_layer = attention.BigBirdMasks(block_size=block_size)
encoder_inputs_mask = tf.zeros((batch_size, seq_length), dtype=tf.int32)
masks = mask_layer(encoder_inputs_mask)
test_layer = attention.BigBirdAttention(
num_heads=num_heads,
key_dim=key_dim,
from_block_size=block_size,
to_block_size=block_size,
seed=0)
query = tf.random.normal(
shape=(batch_size, seq_length, key_dim))
value = query
output = test_layer(
query=query,
value=value,
attention_mask=masks)
self.assertEqual(output.shape, [batch_size, seq_length, key_dim])
def test_config(self):
num_heads = 12
key_dim = 64
block_size = 64
test_layer = attention.BigBirdAttention(
num_heads=num_heads,
key_dim=key_dim,
from_block_size=block_size,
to_block_size=block_size,
seed=0)
print(test_layer.get_config())
new_layer = attention.BigBirdAttention.from_config(
test_layer.get_config())
# If the serialization was successful, the new config should match the old.
self.assertAllEqual(test_layer.get_config(), new_layer.get_config())
if __name__ == '__main__':
tf.test.main()
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Transformer-based text encoder network."""
# pylint: disable=g-classes-have-attributes
import tensorflow as tf
from official.modeling import activations
from official.nlp import keras_nlp
from official.nlp.modeling import layers
from official.nlp.projects.bigbird import attention
@tf.keras.utils.register_keras_serializable(package='Text')
class BigBirdEncoder(tf.keras.Model):
"""Transformer-based encoder network with BigBird attentions.
*Note* that the network is constructed by
[Keras Functional API](https://keras.io/guides/functional_api/).
Arguments:
vocab_size: The size of the token vocabulary.
hidden_size: The size of the transformer hidden layers.
num_layers: The number of transformer layers.
num_attention_heads: The number of attention heads for each transformer. The
hidden size must be divisible by the number of attention heads.
max_sequence_length: The maximum sequence length that this encoder can
consume. If None, max_sequence_length uses the value from sequence length.
This determines the variable shape for positional embeddings.
type_vocab_size: The number of types that the 'type_ids' input can take.
intermediate_size: The intermediate size for the transformer layers.
activation: The activation to use for the transformer layers.
dropout_rate: The dropout rate to use for the transformer layers.
attention_dropout_rate: The dropout rate to use for the attention layers
within the transformer layers.
initializer: The initialzer to use for all weights in this encoder.
embedding_width: The width of the word embeddings. If the embedding width is
not equal to hidden size, embedding parameters will be factorized into two
matrices in the shape of ['vocab_size', 'embedding_width'] and
['embedding_width', 'hidden_size'] ('embedding_width' is usually much
smaller than 'hidden_size').
"""
def __init__(self,
vocab_size,
hidden_size=768,
num_layers=12,
num_attention_heads=12,
max_sequence_length=attention.MAX_SEQ_LEN,
type_vocab_size=16,
intermediate_size=3072,
block_size=64,
num_rand_blocks=3,
activation=activations.gelu,
dropout_rate=0.1,
attention_dropout_rate=0.1,
initializer=tf.keras.initializers.TruncatedNormal(stddev=0.02),
embedding_width=None,
**kwargs):
activation = tf.keras.activations.get(activation)
initializer = tf.keras.initializers.get(initializer)
self._self_setattr_tracking = False
self._config_dict = {
'vocab_size': vocab_size,
'hidden_size': hidden_size,
'num_layers': num_layers,
'num_attention_heads': num_attention_heads,
'max_sequence_length': max_sequence_length,
'type_vocab_size': type_vocab_size,
'intermediate_size': intermediate_size,
'block_size': block_size,
'num_rand_blocks': num_rand_blocks,
'activation': tf.keras.activations.serialize(activation),
'dropout_rate': dropout_rate,
'attention_dropout_rate': attention_dropout_rate,
'initializer': tf.keras.initializers.serialize(initializer),
'embedding_width': embedding_width,
}
word_ids = tf.keras.layers.Input(
shape=(None,), dtype=tf.int32, name='input_word_ids')
mask = tf.keras.layers.Input(
shape=(None,), dtype=tf.int32, name='input_mask')
type_ids = tf.keras.layers.Input(
shape=(None,), dtype=tf.int32, name='input_type_ids')
if embedding_width is None:
embedding_width = hidden_size
self._embedding_layer = keras_nlp.layers.OnDeviceEmbedding(
vocab_size=vocab_size,
embedding_width=embedding_width,
initializer=initializer,
name='word_embeddings')
word_embeddings = self._embedding_layer(word_ids)
# Always uses dynamic slicing for simplicity.
self._position_embedding_layer = keras_nlp.layers.PositionEmbedding(
initializer=initializer,
max_length=max_sequence_length,
name='position_embedding')
position_embeddings = self._position_embedding_layer(word_embeddings)
self._type_embedding_layer = keras_nlp.layers.OnDeviceEmbedding(
vocab_size=type_vocab_size,
embedding_width=embedding_width,
initializer=initializer,
use_one_hot=True,
name='type_embeddings')
type_embeddings = self._type_embedding_layer(type_ids)
embeddings = tf.keras.layers.Add()(
[word_embeddings, position_embeddings, type_embeddings])
self._embedding_norm_layer = tf.keras.layers.LayerNormalization(
name='embeddings/layer_norm', axis=-1, epsilon=1e-12, dtype=tf.float32)
embeddings = self._embedding_norm_layer(embeddings)
embeddings = tf.keras.layers.Dropout(rate=dropout_rate)(embeddings)
# We project the 'embedding' output to 'hidden_size' if it is not already
# 'hidden_size'.
if embedding_width != hidden_size:
self._embedding_projection = tf.keras.layers.experimental.EinsumDense(
'...x,xy->...y',
output_shape=hidden_size,
bias_axes='y',
kernel_initializer=initializer,
name='embedding_projection')
embeddings = self._embedding_projection(embeddings)
self._transformer_layers = []
data = embeddings
masks = attention.BigBirdMasks(block_size=block_size)(mask)
encoder_outputs = []
attn_head_dim = hidden_size // num_attention_heads
for i in range(num_layers):
layer = layers.TransformerScaffold(
num_attention_heads,
intermediate_size,
activation,
attention_cls=attention.BigBirdAttention,
attention_cfg=dict(
num_heads=num_attention_heads,
key_dim=attn_head_dim,
kernel_initializer=initializer,
from_block_size=block_size,
to_block_size=block_size,
num_rand_blocks=num_rand_blocks,
max_rand_mask_length=max_sequence_length,
seed=i),
dropout_rate=dropout_rate,
attention_dropout_rate=dropout_rate,
kernel_initializer=initializer)
self._transformer_layers.append(layer)
data = layer([data, masks])
encoder_outputs.append(data)
outputs = dict(
sequence_output=encoder_outputs[-1], encoder_outputs=encoder_outputs)
super().__init__(
inputs=[word_ids, mask, type_ids], outputs=outputs, **kwargs)
def get_embedding_table(self):
return self._embedding_layer.embeddings
def get_embedding_layer(self):
return self._embedding_layer
def get_config(self):
return self._config_dict
@property
def transformer_layers(self):
"""List of Transformer layers in the encoder."""
return self._transformer_layers
@property
def pooler_layer(self):
"""The pooler dense layer after the transformer layers."""
return self._pooler_layer
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for official.nlp.projects.bigbird.encoder."""
import numpy as np
import tensorflow as tf
from official.nlp.projects.bigbird import encoder
class BigBirdEncoderTest(tf.test.TestCase):
def test_encoder(self):
sequence_length = 1024
batch_size = 2
vocab_size = 1024
network = encoder.BigBirdEncoder(
num_layers=1, vocab_size=1024, max_sequence_length=4096)
word_id_data = np.random.randint(
vocab_size, size=(batch_size, sequence_length))
mask_data = np.random.randint(2, size=(batch_size, sequence_length))
type_id_data = np.random.randint(2, size=(batch_size, sequence_length))
outputs = network([word_id_data, mask_data, type_id_data])
self.assertEqual(outputs["sequence_output"].shape,
(batch_size, sequence_length, 768))
def test_save_restore(self):
sequence_length = 1024
batch_size = 2
vocab_size = 1024
network = encoder.BigBirdEncoder(
num_layers=1, vocab_size=1024, max_sequence_length=4096)
word_id_data = np.random.randint(
vocab_size, size=(batch_size, sequence_length))
mask_data = np.random.randint(2, size=(batch_size, sequence_length))
type_id_data = np.random.randint(2, size=(batch_size, sequence_length))
inputs = dict(
input_word_ids=word_id_data,
input_mask=mask_data,
input_type_ids=type_id_data)
ref_outputs = network(inputs)
model_path = self.get_temp_dir() + "/model"
network.save(model_path)
loaded = tf.keras.models.load_model(model_path)
outputs = loaded(inputs)
self.assertAllClose(outputs["sequence_output"],
ref_outputs["sequence_output"])
if __name__ == "__main__":
tf.test.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment