".github/git@developer.sourcefind.cn:OpenDAS/autoawq.git" did not exist on "51f89b6c8b850091771514656c7f263bba012603"
Commit 90e17531 authored by A. Unique TensorFlower's avatar A. Unique TensorFlower
Browse files

Update documentations for ResNet-RS.

PiperOrigin-RevId: 366817283
parent 7b6c1bcb
...@@ -41,6 +41,7 @@ In the near future, we will add: ...@@ -41,6 +41,7 @@ In the near future, we will add:
|-------|-------------------| |-------|-------------------|
| [MNIST](vision/image_classification) | A basic model to classify digits from the [MNIST dataset](http://yann.lecun.com/exdb/mnist/) | | [MNIST](vision/image_classification) | A basic model to classify digits from the [MNIST dataset](http://yann.lecun.com/exdb/mnist/) |
| [ResNet](vision/image_classification) | [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) | | [ResNet](vision/image_classification) | [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) |
| [ResNet-RS](vision/image_classification) | [Revisiting ResNets: Improved Training and Scaling Strategies](https://arxiv.org/abs/2103.07579) |
| [EfficientNet](vision/image_classification) | [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) | | [EfficientNet](vision/image_classification) | [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) |
#### Object Detection and Segmentation #### Object Detection and Segmentation
......
...@@ -20,8 +20,10 @@ TF Vision model garden provides a large collection of baselines and checkpoints ...@@ -20,8 +20,10 @@ TF Vision model garden provides a large collection of baselines and checkpoints
#### ResNet-RS models trained with settings including: #### ResNet-RS models trained with settings including:
We support state-of-the-art [ResNet-RS](https://arxiv.org/abs/2103.07579) image classification models with features:
* ResNet-RS architectural changes and Swish activation. * ResNet-RS architectural changes and Swish activation. (Note that ResNet-RS
adopts ReLU activation in the paper.)
* Regularization methods including Random Augment, 4e-5 weight decay, stochastic depth, label smoothing and dropout. * Regularization methods including Random Augment, 4e-5 weight decay, stochastic depth, label smoothing and dropout.
* New training methods including a 350-epoch schedule, cosine learning rate and * New training methods including a 350-epoch schedule, cosine learning rate and
EMA. EMA.
......
...@@ -12,7 +12,7 @@ ...@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""Contains definitions of Residual Networks.""" """Contains definitions of ResNet and ResNet-RS models."""
# Import libraries # Import libraries
import tensorflow as tf import tensorflow as tf
...@@ -87,12 +87,16 @@ RESNET_SPECS = { ...@@ -87,12 +87,16 @@ RESNET_SPECS = {
@tf.keras.utils.register_keras_serializable(package='Vision') @tf.keras.utils.register_keras_serializable(package='Vision')
class ResNet(tf.keras.Model): class ResNet(tf.keras.Model):
"""Creates a ResNet family model. """Creates ResNet and ResNet-RS family models.
This implements the Deep Residual Network from: This implements the Deep Residual Network from:
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
Deep Residual Learning for Image Recognition. Deep Residual Learning for Image Recognition.
(https://arxiv.org/pdf/1512.03385) (https://arxiv.org/pdf/1512.03385) and
Irwan Bello, William Fedus, Xianzhi Du, Ekin D. Cubuk, Aravind Srinivas,
Tsung-Yi Lin, Jonathon Shlens, Barret Zoph.
Revisiting ResNets: Improved Training and Scaling Strategies.
(https://arxiv.org/abs/2103.07579).
""" """
def __init__(self, def __init__(self,
...@@ -118,7 +122,8 @@ class ResNet(tf.keras.Model): ...@@ -118,7 +122,8 @@ class ResNet(tf.keras.Model):
model_id: An `int` of the depth of ResNet backbone model. model_id: An `int` of the depth of ResNet backbone model.
input_specs: A `tf.keras.layers.InputSpec` of the input tensor. input_specs: A `tf.keras.layers.InputSpec` of the input tensor.
depth_multiplier: A `float` of the depth multiplier to uniformaly scale up depth_multiplier: A `float` of the depth multiplier to uniformaly scale up
all layers in channel size in ResNet. all layers in channel size. This argument is also referred to as
`width_multiplier` in (https://arxiv.org/abs/2103.07579).
stem_type: A `str` of stem type of ResNet. Default to `v0`. If set to stem_type: A `str` of stem type of ResNet. Default to `v0`. If set to
`v1`, use ResNet-D type stem (https://arxiv.org/abs/1812.01187). `v1`, use ResNet-D type stem (https://arxiv.org/abs/1812.01187).
resnetd_shortcut: A `bool` of whether to use ResNet-D shortcut in resnetd_shortcut: A `bool` of whether to use ResNet-D shortcut in
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment