"tools/imglab/vscode:/vscode.git/clone" did not exist on "2651becf91a5f2f2b3d299f877c062aa7f6388a2"
Commit 90dd6310 authored by Frederick Liu's avatar Frederick Liu Committed by A. Unique TensorFlower
Browse files

Internal change

PiperOrigin-RevId: 417673004
parent ddaca60a
# Transformer Translation Model
This is an implementation of the Transformer translation model as described in
the [Attention is All You Need](https://arxiv.org/abs/1706.03762) paper. The
implementation leverages tf.keras and makes sure it is compatible with TF 2.x.
**Warning: the features in the `transformer/` folder have been fully intergrated
into nlp/modeling.
Due to its dependencies, we will remove this folder after the model
garden 2.5 release. The model in `nlp/modeling/models/seq2seq_transformer.py` is
identical to the model in this folder.**
## Contents
* [Contents](#contents)
* [Walkthrough](#walkthrough)
* [Detailed instructions](#detailed-instructions)
* [Environment preparation](#environment-preparation)
* [Download and preprocess datasets](#download-and-preprocess-datasets)
* [Model training and evaluation](#model-training-and-evaluation)
* [Implementation overview](#implementation-overview)
* [Model Definition](#model-definition)
* [Model Trainer](#model-trainer)
* [Test dataset](#test-dataset)
## Walkthrough
Below are the commands for running the Transformer model. See the
[Detailed instructions](#detailed-instructions) for more details on running the
model.
```
# Ensure that PYTHONPATH is correctly defined as described in
# https://github.com/tensorflow/models/tree/master/official#requirements
export PYTHONPATH="$PYTHONPATH:/path/to/models"
cd /path/to/models/official/legacy/transformer
# Export variables
PARAM_SET=big
DATA_DIR=$HOME/transformer/data
MODEL_DIR=$HOME/transformer/model_$PARAM_SET
VOCAB_FILE=$DATA_DIR/vocab.ende.32768
# Download training/evaluation/test datasets
python3 data_download.py --data_dir=$DATA_DIR
# Train the model for 100000 steps and evaluate every 5000 steps on a single GPU.
# Each train step, takes 4096 tokens as a batch budget with 64 as sequence
# maximal length.
python3 transformer_main.py --data_dir=$DATA_DIR --model_dir=$MODEL_DIR \
--vocab_file=$VOCAB_FILE --param_set=$PARAM_SET \
--train_steps=100000 --steps_between_evals=5000 \
--batch_size=4096 --max_length=64 \
--bleu_source=$DATA_DIR/newstest2014.en \
--bleu_ref=$DATA_DIR/newstest2014.de \
--num_gpus=1 \
--enable_time_history=false
# Run during training in a separate process to get continuous updates,
# or after training is complete.
tensorboard --logdir=$MODEL_DIR
```
## Detailed instructions
0. ### Environment preparation
#### Add models repo to PYTHONPATH
Follow the instructions described in the [Requirements](https://github.com/tensorflow/models/tree/master/official#requirements) section to add the models folder to the python path.
#### Export variables (optional)
Export the following variables, or modify the values in each of the snippets below:
```shell
PARAM_SET=big
DATA_DIR=$HOME/transformer/data
MODEL_DIR=$HOME/transformer/model_$PARAM_SET
VOCAB_FILE=$DATA_DIR/vocab.ende.32768
```
1. ### Download and preprocess datasets
[data_download.py](data_download.py) downloads and preprocesses the training and evaluation WMT datasets. After the data is downloaded and extracted, the training data is used to generate a vocabulary of subtokens. The evaluation and training strings are tokenized, and the resulting data is sharded, shuffled, and saved as TFRecords.
1.75GB of compressed data will be downloaded. In total, the raw files (compressed, extracted, and combined files) take up 8.4GB of disk space. The resulting TFRecord and vocabulary files are 722MB. The script takes around 40 minutes to run, with the bulk of the time spent downloading and ~15 minutes spent on preprocessing.
Command to run:
```
python3 data_download.py --data_dir=$DATA_DIR
```
Arguments:
* `--data_dir`: Path where the preprocessed TFRecord data, and vocab file will be saved.
* Use the `--help` or `-h` flag to get a full list of possible arguments.
2. ### Model training and evaluation
[transformer_main.py](transformer_main.py) creates a Transformer keras model,
and trains it uses keras model.fit().
Users need to adjust `batch_size` and `num_gpus` to get good performance
running multiple GPUs.
**Note that:**
when using multiple GPUs or TPUs, this is the global batch size for all
devices. For example, if the batch size is `4096*4` and there are 4 devices,
each device will take 4096 tokens as a batch budget.
Command to run:
```
python3 transformer_main.py --data_dir=$DATA_DIR --model_dir=$MODEL_DIR \
--vocab_file=$VOCAB_FILE --param_set=$PARAM_SET
```
Arguments:
* `--data_dir`: This should be set to the same directory given to the `data_download`'s `data_dir` argument.
* `--model_dir`: Directory to save Transformer model training checkpoints.
* `--vocab_file`: Path to subtoken vocabulary file. If data_download was used, you may find the file in `data_dir`.
* `--param_set`: Parameter set to use when creating and training the model. Options are `base` and `big` (default).
* `--enable_time_history`: Whether add TimeHistory call. If so, --log_steps must be specified.
* `--batch_size`: The number of tokens to consider in a batch. Combining with
`--max_length`, they decide how many sequences are used per batch.
* Use the `--help` or `-h` flag to get a full list of possible arguments.
#### Using multiple GPUs
You can train these models on multiple GPUs using `tf.distribute.Strategy` API.
You can read more about them in this
[guide](https://www.tensorflow.org/guide/distribute_strategy).
In this example, we have made it easier to use is with just a command line flag
`--num_gpus`. By default this flag is 1 if TensorFlow is compiled with CUDA,
and 0 otherwise.
- --num_gpus=0: Uses tf.distribute.OneDeviceStrategy with CPU as the device.
- --num_gpus=1: Uses tf.distribute.OneDeviceStrategy with GPU as the device.
- --num_gpus=2+: Uses tf.distribute.MirroredStrategy to run synchronous
distributed training across the GPUs.
#### Using Cloud TPUs
You can train the Transformer model on Cloud TPUs using
`tf.distribute.TPUStrategy`. If you are not familiar with Cloud TPUs, it is
strongly recommended that you go through the
[quickstart](https://cloud.google.com/tpu/docs/quickstart) to learn how to
create a TPU and GCE VM.
To run the Transformer model on a TPU, you must set
`--distribution_strategy=tpu`, `--tpu=$TPU_NAME`, and `--use_ctl=True` where
`$TPU_NAME` the name of your TPU in the Cloud Console.
An example command to run Transformer on a v2-8 or v3-8 TPU would be:
```bash
python transformer_main.py \
--tpu=$TPU_NAME \
--model_dir=$MODEL_DIR \
--data_dir=$DATA_DIR \
--vocab_file=$DATA_DIR/vocab.ende.32768 \
--bleu_source=$DATA_DIR/newstest2014.en \
--bleu_ref=$DATA_DIR/newstest2014.end \
--batch_size=6144 \
--train_steps=2000 \
--static_batch=true \
--use_ctl=true \
--param_set=big \
--max_length=64 \
--decode_batch_size=32 \
--decode_max_length=97 \
--padded_decode=true \
--distribution_strategy=tpu
```
Note: `$MODEL_DIR` and `$DATA_DIR` must be GCS paths.
#### Customizing training schedule
By default, the model will train for 10 epochs, and evaluate after every epoch. The training schedule may be defined through the flags:
* Training with steps:
* `--train_steps`: sets the total number of training steps to run.
* `--steps_between_evals`: Number of training steps to run between evaluations.
#### Compute BLEU score during model evaluation
Use these flags to compute the BLEU when the model evaluates:
* `--bleu_source`: Path to file containing text to translate.
* `--bleu_ref`: Path to file containing the reference translation.
When running `transformer_main.py`, use the flags: `--bleu_source=$DATA_DIR/newstest2014.en --bleu_ref=$DATA_DIR/newstest2014.de`
#### Tensorboard
Training and evaluation metrics (loss, accuracy, approximate BLEU score, etc.) are logged, and can be displayed in the browser using Tensorboard.
```
tensorboard --logdir=$MODEL_DIR
```
The values are displayed at [localhost:6006](localhost:6006).
## Implementation overview
A brief look at each component in the code:
### Model Definition
* [transformer.py](transformer.py): Defines a tf.keras.Model: `Transformer`.
* [embedding_layer.py](embedding_layer.py): Contains the layer that calculates the embeddings. The embedding weights are also used to calculate the pre-softmax probabilities from the decoder output.
* [attention_layer.py](attention_layer.py): Defines the multi-headed and self attention layers that are used in the encoder/decoder stacks.
* [ffn_layer.py](ffn_layer.py): Defines the feedforward network that is used in the encoder/decoder stacks. The network is composed of 2 fully connected layers.
Other files:
* [beam_search.py](beam_search.py) contains the beam search implementation, which is used during model inference to find high scoring translations.
### Model Trainer
[transformer_main.py](transformer_main.py) creates an `TransformerTask` to train and evaluate the model using tf.keras.
### Test dataset
The [newstest2014 files](https://storage.googleapis.com/tf-perf-public/official_transformer/test_data/newstest2014.tgz)
are extracted from the [NMT Seq2Seq tutorial](https://google.github.io/seq2seq/nmt/#download-data).
The raw text files are converted from the SGM format of the
[WMT 2016](http://www.statmt.org/wmt16/translation-task.html) test sets. The
newstest2014 files are put into the `$DATA_DIR` when executing `data_download.py`
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of multiheaded attention and self-attention layers."""
import math
import tensorflow as tf
class Attention(tf.keras.layers.Layer):
"""Multi-headed attention layer."""
def __init__(self, hidden_size, num_heads, attention_dropout):
"""Initialize Attention.
Args:
hidden_size: int, output dim of hidden layer.
num_heads: int, number of heads to repeat the same attention structure.
attention_dropout: float, dropout rate inside attention for training.
"""
if hidden_size % num_heads:
raise ValueError(
"Hidden size ({}) must be divisible by the number of heads ({})."
.format(hidden_size, num_heads))
super(Attention, self).__init__()
self.hidden_size = hidden_size
self.num_heads = num_heads
self.attention_dropout = attention_dropout
def build(self, input_shape):
"""Builds the layer."""
# Layers for linearly projecting the queries, keys, and values.
size_per_head = self.hidden_size // self.num_heads
def _glorot_initializer(fan_in, fan_out):
limit = math.sqrt(6.0 / (fan_in + fan_out))
return tf.keras.initializers.RandomUniform(minval=-limit, maxval=limit)
attention_initializer = _glorot_initializer(input_shape.as_list()[-1],
self.hidden_size)
self.query_dense_layer = tf.keras.layers.experimental.EinsumDense(
"BTE,ENH->BTNH",
output_shape=(None, self.num_heads, size_per_head),
kernel_initializer=attention_initializer,
bias_axes=None,
name="query")
self.key_dense_layer = tf.keras.layers.experimental.EinsumDense(
"BTE,ENH->BTNH",
output_shape=(None, self.num_heads, size_per_head),
kernel_initializer=attention_initializer,
bias_axes=None,
name="key")
self.value_dense_layer = tf.keras.layers.experimental.EinsumDense(
"BTE,ENH->BTNH",
output_shape=(None, self.num_heads, size_per_head),
kernel_initializer=attention_initializer,
bias_axes=None,
name="value")
output_initializer = _glorot_initializer(self.hidden_size, self.hidden_size)
self.output_dense_layer = tf.keras.layers.experimental.EinsumDense(
"BTNH,NHE->BTE",
output_shape=(None, self.hidden_size),
kernel_initializer=output_initializer,
bias_axes=None,
name="output_transform")
super(Attention, self).build(input_shape)
def get_config(self):
return {
"hidden_size": self.hidden_size,
"num_heads": self.num_heads,
"attention_dropout": self.attention_dropout,
}
def call(self,
query_input,
source_input,
bias,
training,
cache=None,
decode_loop_step=None):
"""Apply attention mechanism to query_input and source_input.
Args:
query_input: A tensor with shape [batch_size, length_query, hidden_size].
source_input: A tensor with shape [batch_size, length_source,
hidden_size].
bias: A tensor with shape [batch_size, 1, length_query, length_source],
the attention bias that will be added to the result of the dot product.
training: A bool, whether in training mode or not.
cache: (Used during prediction) A dictionary with tensors containing
results of previous attentions. The dictionary must have the items:
{"k": tensor with shape [batch_size, i, heads, dim_per_head],
"v": tensor with shape [batch_size, i, heads, dim_per_head]} where
i is the current decoded length for non-padded decode, or max
sequence length for padded decode.
decode_loop_step: An integer, step number of the decoding loop. Used only
for autoregressive inference on TPU.
Returns:
Attention layer output with shape [batch_size, length_query, hidden_size]
"""
# Linearly project the query, key and value using different learned
# projections. Splitting heads is automatically done during the linear
# projections --> [batch_size, length, num_heads, dim_per_head].
query = self.query_dense_layer(query_input)
key = self.key_dense_layer(source_input)
value = self.value_dense_layer(source_input)
if cache is not None:
# Combine cached keys and values with new keys and values.
if decode_loop_step is not None:
cache_k_shape = cache["k"].shape.as_list()
indices = tf.reshape(
tf.one_hot(decode_loop_step, cache_k_shape[1], dtype=key.dtype),
[1, cache_k_shape[1], 1, 1])
key = cache["k"] + key * indices
cache_v_shape = cache["v"].shape.as_list()
indices = tf.reshape(
tf.one_hot(decode_loop_step, cache_v_shape[1], dtype=value.dtype),
[1, cache_v_shape[1], 1, 1])
value = cache["v"] + value * indices
else:
key = tf.concat([tf.cast(cache["k"], key.dtype), key], axis=1)
value = tf.concat([tf.cast(cache["v"], value.dtype), value], axis=1)
# Update cache
cache["k"] = key
cache["v"] = value
# Scale query to prevent the dot product between query and key from growing
# too large.
depth = (self.hidden_size // self.num_heads)
query *= depth**-0.5
# Calculate dot product attention
logits = tf.einsum("BTNH,BFNH->BNFT", key, query)
logits += bias
# Note that softmax internally performs math operations using float32
# for numeric stability. When training with float16, we keep the input
# and output in float16 for better performance.
weights = tf.nn.softmax(logits, name="attention_weights")
if training:
weights = tf.nn.dropout(weights, rate=self.attention_dropout)
attention_output = tf.einsum("BNFT,BTNH->BFNH", weights, value)
# Run the outputs through another linear projection layer. Recombining heads
# is automatically done --> [batch_size, length, hidden_size]
attention_output = self.output_dense_layer(attention_output)
return attention_output
class SelfAttention(Attention):
"""Multiheaded self-attention layer."""
def call(self,
query_input,
bias,
training,
cache=None,
decode_loop_step=None):
return super(SelfAttention, self).call(query_input, query_input, bias,
training, cache, decode_loop_step)
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Beam search to find the translated sequence with the highest probability."""
import tensorflow.compat.v1 as tf
from official.nlp.modeling.ops import beam_search
_StateKeys = beam_search._StateKeys # pylint: disable=protected-access
class SequenceBeamSearch(beam_search.SequenceBeamSearch):
"""Implementation of beam search loop."""
def _process_finished_state(self, finished_state):
alive_seq = finished_state[_StateKeys.ALIVE_SEQ]
alive_log_probs = finished_state[_StateKeys.ALIVE_LOG_PROBS]
finished_seq = finished_state[_StateKeys.FINISHED_SEQ]
finished_scores = finished_state[_StateKeys.FINISHED_SCORES]
finished_flags = finished_state[_StateKeys.FINISHED_FLAGS]
# Account for corner case where there are no finished sequences for a
# particular batch item. In that case, return alive sequences for that batch
# item.
finished_seq = tf.where(
tf.reduce_any(finished_flags, 1), finished_seq, alive_seq)
finished_scores = tf.where(
tf.reduce_any(finished_flags, 1), finished_scores, alive_log_probs)
return finished_seq, finished_scores
def sequence_beam_search(symbols_to_logits_fn,
initial_ids,
initial_cache,
vocab_size,
beam_size,
alpha,
max_decode_length,
eos_id,
padded_decode=False):
"""Search for sequence of subtoken ids with the largest probability.
Args:
symbols_to_logits_fn: A function that takes in ids, index, and cache as
arguments. The passed in arguments will have shape: ids -> A tensor with
shape [batch_size * beam_size, index]. index -> A scalar. cache -> A
nested dictionary of tensors [batch_size * beam_size, ...].
The function must return a tuple of logits and new cache: logits -> A
tensor with shape [batch * beam_size, vocab_size]. new cache -> A nested
dictionary with the same shape/structure as the inputted cache.
initial_ids: An int32 tensor with shape [batch_size]. Starting ids for each
batch item.
initial_cache: A dictionary, containing starting decoder variables
information.
vocab_size: An integer, the size of the vocabulary, used for topk
computation.
beam_size: An integer, the number of beams.
alpha: A float, defining the strength of length normalization.
max_decode_length: An integer, the maximum length to decoded a sequence.
eos_id: An integer, ID of eos token, used to determine when a sequence has
finished.
padded_decode: A bool, indicating if max_sequence_length padding is used for
beam search.
Returns:
Top decoded sequences [batch_size, beam_size, max_decode_length]
sequence scores [batch_size, beam_size]
"""
sbs = SequenceBeamSearch(symbols_to_logits_fn, vocab_size, beam_size, alpha,
max_decode_length, eos_id, padded_decode)
return sbs.search(initial_ids, initial_cache)
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Script to compute official BLEU score.
Source:
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/bleu_hook.py
"""
import re
import sys
import unicodedata
from absl import app
from absl import flags
from absl import logging
import six
from six.moves import range
import tensorflow as tf
from official.legacy.transformer.utils import metrics
from official.legacy.transformer.utils import tokenizer
from official.utils.flags import core as flags_core
class UnicodeRegex(object):
"""Ad-hoc hack to recognize all punctuation and symbols."""
def __init__(self):
punctuation = self.property_chars("P")
self.nondigit_punct_re = re.compile(r"([^\d])([" + punctuation + r"])")
self.punct_nondigit_re = re.compile(r"([" + punctuation + r"])([^\d])")
self.symbol_re = re.compile("([" + self.property_chars("S") + "])")
def property_chars(self, prefix):
return "".join(
six.unichr(x)
for x in range(sys.maxunicode)
if unicodedata.category(six.unichr(x)).startswith(prefix))
uregex = UnicodeRegex()
def bleu_tokenize(string):
r"""Tokenize a string following the official BLEU implementation.
See https://github.com/moses-smt/mosesdecoder/'
'blob/master/scripts/generic/mteval-v14.pl#L954-L983
In our case, the input string is expected to be just one line
and no HTML entities de-escaping is needed.
So we just tokenize on punctuation and symbols,
except when a punctuation is preceded and followed by a digit
(e.g. a comma/dot as a thousand/decimal separator).
Note that a numer (e.g. a year) followed by a dot at the end of sentence
is NOT tokenized,
i.e. the dot stays with the number because `s/(\p{P})(\P{N})/ $1 $2/g`
does not match this case (unless we add a space after each sentence).
However, this error is already in the original mteval-v14.pl
and we want to be consistent with it.
Args:
string: the input string
Returns:
a list of tokens
"""
string = uregex.nondigit_punct_re.sub(r"\1 \2 ", string)
string = uregex.punct_nondigit_re.sub(r" \1 \2", string)
string = uregex.symbol_re.sub(r" \1 ", string)
return string.split()
def bleu_wrapper(ref_filename, hyp_filename, case_sensitive=False):
"""Compute BLEU for two files (reference and hypothesis translation)."""
ref_lines = tokenizer.native_to_unicode(
tf.io.gfile.GFile(ref_filename).read()).strip().splitlines()
hyp_lines = tokenizer.native_to_unicode(
tf.io.gfile.GFile(hyp_filename).read()).strip().splitlines()
return bleu_on_list(ref_lines, hyp_lines, case_sensitive)
def bleu_on_list(ref_lines, hyp_lines, case_sensitive=False):
"""Compute BLEU for two list of strings (reference and hypothesis)."""
if len(ref_lines) != len(hyp_lines):
raise ValueError(
"Reference and translation files have different number of "
"lines (%d VS %d). If training only a few steps (100-200), the "
"translation may be empty." % (len(ref_lines), len(hyp_lines)))
if not case_sensitive:
ref_lines = [x.lower() for x in ref_lines]
hyp_lines = [x.lower() for x in hyp_lines]
ref_tokens = [bleu_tokenize(x) for x in ref_lines]
hyp_tokens = [bleu_tokenize(x) for x in hyp_lines]
return metrics.compute_bleu(ref_tokens, hyp_tokens) * 100
def main(unused_argv):
if FLAGS.bleu_variant in ("both", "uncased"):
score = bleu_wrapper(FLAGS.reference, FLAGS.translation, False)
logging.info("Case-insensitive results: %f", score)
if FLAGS.bleu_variant in ("both", "cased"):
score = bleu_wrapper(FLAGS.reference, FLAGS.translation, True)
logging.info("Case-sensitive results: %f", score)
def define_compute_bleu_flags():
"""Add flags for computing BLEU score."""
flags.DEFINE_string(
name="translation",
default=None,
help=flags_core.help_wrap("File containing translated text."))
flags.mark_flag_as_required("translation")
flags.DEFINE_string(
name="reference",
default=None,
help=flags_core.help_wrap("File containing reference translation."))
flags.mark_flag_as_required("reference")
flags.DEFINE_enum(
name="bleu_variant",
short_name="bv",
default="both",
enum_values=["both", "uncased", "cased"],
case_sensitive=False,
help=flags_core.help_wrap(
"Specify one or more BLEU variants to calculate. Variants: \"cased\""
", \"uncased\", or \"both\"."))
if __name__ == "__main__":
define_compute_bleu_flags()
FLAGS = flags.FLAGS
app.run(main)
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test functions in compute_blue.py."""
import tempfile
import tensorflow as tf
from official.legacy.transformer import compute_bleu
class ComputeBleuTest(tf.test.TestCase):
def _create_temp_file(self, text):
temp_file = tempfile.NamedTemporaryFile(delete=False)
with tf.io.gfile.GFile(temp_file.name, "w") as w:
w.write(text)
return temp_file.name
def test_bleu_same(self):
ref = self._create_temp_file("test 1 two 3\nmore tests!")
hyp = self._create_temp_file("test 1 two 3\nmore tests!")
uncased_score = compute_bleu.bleu_wrapper(ref, hyp, False)
cased_score = compute_bleu.bleu_wrapper(ref, hyp, True)
self.assertEqual(100, uncased_score)
self.assertEqual(100, cased_score)
def test_bleu_same_different_case(self):
ref = self._create_temp_file("Test 1 two 3\nmore tests!")
hyp = self._create_temp_file("test 1 two 3\nMore tests!")
uncased_score = compute_bleu.bleu_wrapper(ref, hyp, False)
cased_score = compute_bleu.bleu_wrapper(ref, hyp, True)
self.assertEqual(100, uncased_score)
self.assertLess(cased_score, 100)
def test_bleu_different(self):
ref = self._create_temp_file("Testing\nmore tests!")
hyp = self._create_temp_file("Dog\nCat")
uncased_score = compute_bleu.bleu_wrapper(ref, hyp, False)
cased_score = compute_bleu.bleu_wrapper(ref, hyp, True)
self.assertLess(uncased_score, 100)
self.assertLess(cased_score, 100)
def test_bleu_tokenize(self):
s = "Test0, 1 two, 3"
tokenized = compute_bleu.bleu_tokenize(s)
self.assertEqual(["Test0", ",", "1", "two", ",", "3"], tokenized)
def test_bleu_list(self):
ref = ["test 1 two 3", "more tests!"]
hyp = ["test 1 two 3", "More tests!"]
uncased_score = compute_bleu.bleu_on_list(ref, hyp, False)
cased_score = compute_bleu.bleu_on_list(ref, hyp, True)
self.assertEqual(uncased_score, 100)
self.assertLess(cased_score, 100)
if __name__ == "__main__":
tf.test.main()
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Download and preprocess WMT17 ende training and evaluation datasets."""
import os
import random
import tarfile
# pylint: disable=g-bad-import-order
from absl import app
from absl import flags
from absl import logging
import six
from six.moves import range
from six.moves import urllib
from six.moves import zip
import tensorflow.compat.v1 as tf
from official.legacy.transformer.utils import tokenizer
from official.utils.flags import core as flags_core
# pylint: enable=g-bad-import-order
# Data sources for training/evaluating the transformer translation model.
# If any of the training sources are changed, then either:
# 1) use the flag `--search` to find the best min count or
# 2) update the _TRAIN_DATA_MIN_COUNT constant.
# min_count is the minimum number of times a token must appear in the data
# before it is added to the vocabulary. "Best min count" refers to the value
# that generates a vocabulary set that is closest in size to _TARGET_VOCAB_SIZE.
_TRAIN_DATA_SOURCES = [
{
"url": "http://data.statmt.org/wmt17/translation-task/"
"training-parallel-nc-v12.tgz",
"input": "news-commentary-v12.de-en.en",
"target": "news-commentary-v12.de-en.de",
},
{
"url": "http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz",
"input": "commoncrawl.de-en.en",
"target": "commoncrawl.de-en.de",
},
{
"url": "http://www.statmt.org/wmt13/training-parallel-europarl-v7.tgz",
"input": "europarl-v7.de-en.en",
"target": "europarl-v7.de-en.de",
},
]
# Use pre-defined minimum count to generate subtoken vocabulary.
_TRAIN_DATA_MIN_COUNT = 6
_EVAL_DATA_SOURCES = [{
"url": "http://data.statmt.org/wmt17/translation-task/dev.tgz",
"input": "newstest2013.en",
"target": "newstest2013.de",
}]
_TEST_DATA_SOURCES = [{
"url": ("https://storage.googleapis.com/cloud-tpu-test-datasets/"
"transformer_data/newstest2014.tgz"),
"input": "newstest2014.en",
"target": "newstest2014.de",
}]
# Vocabulary constants
_TARGET_VOCAB_SIZE = 32768 # Number of subtokens in the vocabulary list.
_TARGET_THRESHOLD = 327 # Accept vocabulary if size is within this threshold
VOCAB_FILE = "vocab.ende.%d" % _TARGET_VOCAB_SIZE
# Strings to inclue in the generated files.
_PREFIX = "wmt32k"
_TRAIN_TAG = "train"
_EVAL_TAG = "dev" # Following WMT and Tensor2Tensor conventions, in which the
# evaluation datasets are tagged as "dev" for development.
# Number of files to split train and evaluation data
_TRAIN_SHARDS = 100
_EVAL_SHARDS = 1
def find_file(path, filename, max_depth=5):
"""Returns full filepath if the file is in path or a subdirectory."""
for root, dirs, files in os.walk(path):
if filename in files:
return os.path.join(root, filename)
# Don't search past max_depth
depth = root[len(path) + 1:].count(os.sep)
if depth > max_depth:
del dirs[:] # Clear dirs
return None
###############################################################################
# Download and extraction functions
###############################################################################
def get_raw_files(raw_dir, data_source):
"""Return raw files from source.
Downloads/extracts if needed.
Args:
raw_dir: string directory to store raw files
data_source: dictionary with
{"url": url of compressed dataset containing input and target files
"input": file with data in input language
"target": file with data in target language}
Returns:
dictionary with
{"inputs": list of files containing data in input language
"targets": list of files containing corresponding data in target language
}
"""
raw_files = {
"inputs": [],
"targets": [],
} # keys
for d in data_source:
input_file, target_file = download_and_extract(raw_dir, d["url"],
d["input"], d["target"])
raw_files["inputs"].append(input_file)
raw_files["targets"].append(target_file)
return raw_files
def download_report_hook(count, block_size, total_size):
"""Report hook for download progress.
Args:
count: current block number
block_size: block size
total_size: total size
"""
percent = int(count * block_size * 100 / total_size)
print(six.ensure_str("\r%d%%" % percent) + " completed", end="\r")
def download_from_url(path, url):
"""Download content from a url.
Args:
path: string directory where file will be downloaded
url: string url
Returns:
Full path to downloaded file
"""
filename = six.ensure_str(url).split("/")[-1]
found_file = find_file(path, filename, max_depth=0)
if found_file is None:
filename = os.path.join(path, filename)
logging.info("Downloading from %s to %s.", url, filename)
inprogress_filepath = six.ensure_str(filename) + ".incomplete"
inprogress_filepath, _ = urllib.request.urlretrieve(
url, inprogress_filepath, reporthook=download_report_hook)
# Print newline to clear the carriage return from the download progress.
print()
tf.gfile.Rename(inprogress_filepath, filename)
return filename
else:
logging.info("Already downloaded: %s (at %s).", url, found_file)
return found_file
def download_and_extract(path, url, input_filename, target_filename):
"""Extract files from downloaded compressed archive file.
Args:
path: string directory where the files will be downloaded
url: url containing the compressed input and target files
input_filename: name of file containing data in source language
target_filename: name of file containing data in target language
Returns:
Full paths to extracted input and target files.
Raises:
OSError: if the the download/extraction fails.
"""
# Check if extracted files already exist in path
input_file = find_file(path, input_filename)
target_file = find_file(path, target_filename)
if input_file and target_file:
logging.info("Already downloaded and extracted %s.", url)
return input_file, target_file
# Download archive file if it doesn't already exist.
compressed_file = download_from_url(path, url)
# Extract compressed files
logging.info("Extracting %s.", compressed_file)
with tarfile.open(compressed_file, "r:gz") as corpus_tar:
corpus_tar.extractall(path)
# Return file paths of the requested files.
input_file = find_file(path, input_filename)
target_file = find_file(path, target_filename)
if input_file and target_file:
return input_file, target_file
raise OSError("Download/extraction failed for url %s to path %s" %
(url, path))
def txt_line_iterator(path):
"""Iterate through lines of file."""
with tf.io.gfile.GFile(path) as f:
for line in f:
yield line.strip()
def compile_files(raw_dir, raw_files, tag):
"""Compile raw files into a single file for each language.
Args:
raw_dir: Directory containing downloaded raw files.
raw_files: Dict containing filenames of input and target data.
{"inputs": list of files containing data in input language
"targets": list of files containing corresponding data in target language
}
tag: String to append to the compiled filename.
Returns:
Full path of compiled input and target files.
"""
logging.info("Compiling files with tag %s.", tag)
filename = "%s-%s" % (_PREFIX, tag)
input_compiled_file = os.path.join(raw_dir,
six.ensure_str(filename) + ".lang1")
target_compiled_file = os.path.join(raw_dir,
six.ensure_str(filename) + ".lang2")
with tf.io.gfile.GFile(input_compiled_file, mode="w") as input_writer:
with tf.io.gfile.GFile(target_compiled_file, mode="w") as target_writer:
for i in range(len(raw_files["inputs"])):
input_file = raw_files["inputs"][i]
target_file = raw_files["targets"][i]
logging.info("Reading files %s and %s.", input_file, target_file)
write_file(input_writer, input_file)
write_file(target_writer, target_file)
return input_compiled_file, target_compiled_file
def write_file(writer, filename):
"""Write all of lines from file using the writer."""
for line in txt_line_iterator(filename):
writer.write(line)
writer.write("\n")
###############################################################################
# Data preprocessing
###############################################################################
def encode_and_save_files(subtokenizer, data_dir, raw_files, tag, total_shards):
"""Save data from files as encoded Examples in TFrecord format.
Args:
subtokenizer: Subtokenizer object that will be used to encode the strings.
data_dir: The directory in which to write the examples
raw_files: A tuple of (input, target) data files. Each line in the input and
the corresponding line in target file will be saved in a tf.Example.
tag: String that will be added onto the file names.
total_shards: Number of files to divide the data into.
Returns:
List of all files produced.
"""
# Create a file for each shard.
filepaths = [
shard_filename(data_dir, tag, n + 1, total_shards)
for n in range(total_shards)
]
if all_exist(filepaths):
logging.info("Files with tag %s already exist.", tag)
return filepaths
logging.info("Saving files with tag %s.", tag)
input_file = raw_files[0]
target_file = raw_files[1]
# Write examples to each shard in round robin order.
tmp_filepaths = [six.ensure_str(fname) + ".incomplete" for fname in filepaths]
writers = [tf.python_io.TFRecordWriter(fname) for fname in tmp_filepaths]
counter, shard = 0, 0
for counter, (input_line, target_line) in enumerate(
zip(txt_line_iterator(input_file), txt_line_iterator(target_file))):
if counter > 0 and counter % 100000 == 0:
logging.info("\tSaving case %d.", counter)
example = dict_to_example({
"inputs": subtokenizer.encode(input_line, add_eos=True),
"targets": subtokenizer.encode(target_line, add_eos=True)
})
writers[shard].write(example.SerializeToString())
shard = (shard + 1) % total_shards
for writer in writers:
writer.close()
for tmp_name, final_name in zip(tmp_filepaths, filepaths):
tf.gfile.Rename(tmp_name, final_name)
logging.info("Saved %d Examples", counter + 1)
return filepaths
def shard_filename(path, tag, shard_num, total_shards):
"""Create filename for data shard."""
return os.path.join(
path, "%s-%s-%.5d-of-%.5d" % (_PREFIX, tag, shard_num, total_shards))
def shuffle_records(fname):
"""Shuffle records in a single file."""
logging.info("Shuffling records in file %s", fname)
# Rename file prior to shuffling
tmp_fname = six.ensure_str(fname) + ".unshuffled"
tf.gfile.Rename(fname, tmp_fname)
reader = tf.io.tf_record_iterator(tmp_fname)
records = []
for record in reader:
records.append(record)
if len(records) % 100000 == 0:
logging.info("\tRead: %d", len(records))
random.shuffle(records)
# Write shuffled records to original file name
with tf.python_io.TFRecordWriter(fname) as w:
for count, record in enumerate(records):
w.write(record)
if count > 0 and count % 100000 == 0:
logging.info("\tWriting record: %d", count)
tf.gfile.Remove(tmp_fname)
def dict_to_example(dictionary):
"""Converts a dictionary of string->int to a tf.Example."""
features = {}
for k, v in six.iteritems(dictionary):
features[k] = tf.train.Feature(int64_list=tf.train.Int64List(value=v))
return tf.train.Example(features=tf.train.Features(feature=features))
def all_exist(filepaths):
"""Returns true if all files in the list exist."""
for fname in filepaths:
if not tf.gfile.Exists(fname):
return False
return True
def make_dir(path):
if not tf.gfile.Exists(path):
logging.info("Creating directory %s", path)
tf.gfile.MakeDirs(path)
def main(unused_argv):
"""Obtain training and evaluation data for the Transformer model."""
make_dir(FLAGS.raw_dir)
make_dir(FLAGS.data_dir)
# Download test_data
logging.info("Step 1/5: Downloading test data")
get_raw_files(FLAGS.data_dir, _TEST_DATA_SOURCES)
# Get paths of download/extracted training and evaluation files.
logging.info("Step 2/5: Downloading data from source")
train_files = get_raw_files(FLAGS.raw_dir, _TRAIN_DATA_SOURCES)
eval_files = get_raw_files(FLAGS.raw_dir, _EVAL_DATA_SOURCES)
# Create subtokenizer based on the training files.
logging.info("Step 3/5: Creating subtokenizer and building vocabulary")
train_files_flat = train_files["inputs"] + train_files["targets"]
vocab_file = os.path.join(FLAGS.data_dir, VOCAB_FILE)
subtokenizer = tokenizer.Subtokenizer.init_from_files(
vocab_file,
train_files_flat,
_TARGET_VOCAB_SIZE,
_TARGET_THRESHOLD,
min_count=None if FLAGS.search else _TRAIN_DATA_MIN_COUNT)
logging.info("Step 4/5: Compiling training and evaluation data")
compiled_train_files = compile_files(FLAGS.raw_dir, train_files, _TRAIN_TAG)
compiled_eval_files = compile_files(FLAGS.raw_dir, eval_files, _EVAL_TAG)
# Tokenize and save data as Examples in the TFRecord format.
logging.info("Step 5/5: Preprocessing and saving data")
train_tfrecord_files = encode_and_save_files(subtokenizer, FLAGS.data_dir,
compiled_train_files, _TRAIN_TAG,
_TRAIN_SHARDS)
encode_and_save_files(subtokenizer, FLAGS.data_dir, compiled_eval_files,
_EVAL_TAG, _EVAL_SHARDS)
for fname in train_tfrecord_files:
shuffle_records(fname)
def define_data_download_flags():
"""Add flags specifying data download arguments."""
flags.DEFINE_string(
name="data_dir",
short_name="dd",
default="/tmp/translate_ende",
help=flags_core.help_wrap(
"Directory for where the translate_ende_wmt32k dataset is saved."))
flags.DEFINE_string(
name="raw_dir",
short_name="rd",
default="/tmp/translate_ende_raw",
help=flags_core.help_wrap(
"Path where the raw data will be downloaded and extracted."))
flags.DEFINE_bool(
name="search",
default=False,
help=flags_core.help_wrap(
"If set, use binary search to find the vocabulary set with size"
"closest to the target size (%d)." % _TARGET_VOCAB_SIZE))
if __name__ == "__main__":
logging.set_verbosity(logging.INFO)
define_data_download_flags()
FLAGS = flags.FLAGS
app.run(main)
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Input pipeline for the transformer model to read, filter, and batch examples.
Two things to note in the pipeline:
1. Batching scheme
The examples encoded in the TFRecord files contain data in the format:
{"inputs": [variable length array of integers],
"targets": [variable length array of integers]}
Where integers in the arrays refer to tokens in the English and German vocab
file (named `vocab.ende.32768`).
Prior to batching, elements in the dataset are grouped by length (max between
"inputs" and "targets" length). Each group is then batched such that:
group_batch_size * length <= batch_size.
Another way to view batch_size is the maximum number of tokens in each batch.
Once batched, each element in the dataset will have the shape:
{"inputs": [group_batch_size, padded_input_length],
"targets": [group_batch_size, padded_target_length]}
Lengths are padded to the longest "inputs" or "targets" sequence in the batch
(padded_input_length and padded_target_length can be different).
This batching scheme decreases the fraction of padding tokens per training
batch, thus improving the training speed significantly.
2. Shuffling
While training, the dataset is shuffled in two places in the code. The first
is the list of training files. Second, while reading records using
`parallel_interleave`, the `sloppy` argument is used to generate randomness
in the order of the examples.
"""
import os
from absl import logging
import tensorflow as tf
from official.utils.misc import model_helpers
# Buffer size for reading records from a TFRecord file. Each training file is
# 7.2 MB, so 8 MB allows an entire file to be kept in memory.
_READ_RECORD_BUFFER = 8 * 1000 * 1000
# Example grouping constants. Defines length boundaries for each group.
# These values are the defaults used in Tensor2Tensor.
_MIN_BOUNDARY = 8
_BOUNDARY_SCALE = 1.1
def _load_records(filename):
"""Read file and return a dataset of tf.Examples."""
return tf.data.TFRecordDataset(filename, buffer_size=_READ_RECORD_BUFFER)
def _parse_example(serialized_example):
"""Return inputs and targets Tensors from a serialized tf.Example."""
data_fields = {
"inputs": tf.io.VarLenFeature(tf.int64),
"targets": tf.io.VarLenFeature(tf.int64)
}
parsed = tf.io.parse_single_example(serialized_example, data_fields)
inputs = tf.sparse.to_dense(parsed["inputs"])
targets = tf.sparse.to_dense(parsed["targets"])
return inputs, targets
def _filter_max_length(example, max_length=256):
"""Indicates whether the example's length is lower than the maximum length."""
return tf.logical_and(
tf.size(example[0]) <= max_length,
tf.size(example[1]) <= max_length)
def _get_example_length(example):
"""Returns the maximum length between the example inputs and targets."""
length = tf.maximum(tf.shape(example[0])[0], tf.shape(example[1])[0])
return length
def _create_min_max_boundaries(max_length,
min_boundary=_MIN_BOUNDARY,
boundary_scale=_BOUNDARY_SCALE):
"""Create min and max boundary lists up to max_length.
For example, when max_length=24, min_boundary=4 and boundary_scale=2, the
returned values will be:
buckets_min = [0, 4, 8, 16, 24]
buckets_max = [4, 8, 16, 24, 25]
Args:
max_length: The maximum length of example in dataset.
min_boundary: Minimum length in boundary.
boundary_scale: Amount to scale consecutive boundaries in the list.
Returns:
min and max boundary lists
"""
# Create bucket boundaries list by scaling the previous boundary or adding 1
# (to ensure increasing boundary sizes).
bucket_boundaries = []
x = min_boundary
while x < max_length:
bucket_boundaries.append(x)
x = max(x + 1, int(x * boundary_scale))
# Create min and max boundary lists from the initial list.
buckets_min = [0] + bucket_boundaries
buckets_max = bucket_boundaries + [max_length + 1]
return buckets_min, buckets_max
def _batch_examples(dataset, batch_size, max_length):
"""Group examples by similar lengths, and return batched dataset.
Each batch of similar-length examples are padded to the same length, and may
have different number of elements in each batch, such that:
group_batch_size * padded_length <= batch_size.
This decreases the number of padding tokens per batch, which improves the
training speed.
Args:
dataset: Dataset of unbatched examples.
batch_size: Max number of tokens per batch of examples.
max_length: Max number of tokens in an example input or target sequence.
Returns:
Dataset of batched examples with similar lengths.
"""
# Get min and max boundary lists for each example. These are used to calculate
# the `bucket_id`, which is the index at which:
# buckets_min[bucket_id] <= len(example) < buckets_max[bucket_id]
# Note that using both min and max lists improves the performance.
buckets_min, buckets_max = _create_min_max_boundaries(max_length)
# Create list of batch sizes for each bucket_id, so that
# bucket_batch_size[bucket_id] * buckets_max[bucket_id] <= batch_size
bucket_batch_sizes = [int(batch_size) // x for x in buckets_max]
# bucket_id will be a tensor, so convert this list to a tensor as well.
bucket_batch_sizes = tf.constant(bucket_batch_sizes, dtype=tf.int64)
def example_to_bucket_id(example_input, example_target):
"""Return int64 bucket id for this example, calculated based on length."""
seq_length = _get_example_length((example_input, example_target))
# TODO(xunkai): investigate if removing code branching improves performance.
conditions_c = tf.logical_and(
tf.less_equal(buckets_min, seq_length), tf.less(seq_length,
buckets_max))
bucket_id = tf.reduce_min(tf.where(conditions_c))
return bucket_id
def window_size_fn(bucket_id):
"""Return number of examples to be grouped when given a bucket id."""
return bucket_batch_sizes[bucket_id]
def batching_fn(bucket_id, grouped_dataset):
"""Batch and add padding to a dataset of elements with similar lengths."""
bucket_batch_size = window_size_fn(bucket_id)
# Batch the dataset and add padding so that all input sequences in the
# examples have the same length, and all target sequences have the same
# lengths as well. Resulting lengths of inputs and targets can differ.
return grouped_dataset.padded_batch(bucket_batch_size, ([None], [None]))
return dataset.apply(
tf.data.experimental.group_by_window(
key_func=example_to_bucket_id,
reduce_func=batching_fn,
window_size=None,
window_size_func=window_size_fn))
def _read_and_batch_from_files(file_pattern,
batch_size,
max_length,
max_io_parallelism,
shuffle,
repeat,
static_batch=False,
num_replicas=1,
ctx=None):
"""Create dataset where each item is a dict of "inputs" and "targets".
Args:
file_pattern: String used to match the input TFRecord files.
batch_size: Maximum number of tokens per global batch of examples.
max_length: Maximum number of tokens per example
max_io_parallelism: Max number of cpu cores for parallel input processing.
shuffle: If true, randomizes order of elements.
repeat: Number of times to repeat the dataset. If None, the dataset is
repeated forever.
static_batch: Whether the batches in the dataset should have static shapes.
If True, the input is batched so that every batch has the shape
[batch_size // max_length, max_length]. If False, the input is grouped by
length, and batched so that batches may have different
shapes [N, M], where: N * M <= batch_size M <= max_length In general, this
setting should be False. Dynamic shapes allow the inputs to be grouped
so that the number of padding tokens is minimized, and helps model
training. In cases where the input shape must be static (e.g. running on
TPU), this setting should be set to True.
num_replicas: Number of GPUs or other workers. We will generate global
batches, and each global batch is equally divisible by number of replicas.
Currently it is only effective when static_batch==True. TODO: make it
effective when static_batch=False.
ctx: Input context.
Returns:
tf.data.Dataset object containing examples loaded from the files.
"""
dataset = tf.data.Dataset.list_files(file_pattern, shuffle=shuffle)
if ctx and ctx.num_input_pipelines > 1:
logging.info("Shard %d of the dataset.", ctx.input_pipeline_id)
dataset = dataset.shard(ctx.num_input_pipelines, ctx.input_pipeline_id)
# Read files and interleave results. When training, the order of the examples
# will be non-deterministic.
options = tf.data.Options()
options.experimental_deterministic = False
dataset = dataset.interleave(
_load_records,
cycle_length=max_io_parallelism,
num_parallel_calls=tf.data.experimental.AUTOTUNE).with_options(options)
# Parse each tf.Example into a dictionary
# TODO: Look into prefetch_input_elements for performance optimization. # pylint: disable=g-bad-todo
dataset = dataset.map(
_parse_example, num_parallel_calls=tf.data.experimental.AUTOTUNE)
# Remove examples where the input or target length exceeds the maximum length,
dataset = dataset.filter(lambda x, y: _filter_max_length((x, y), max_length))
if static_batch:
dataset = dataset.padded_batch(
# First calculate batch size (token number) per worker, then divide it
# into sentences, and finally expand to a global batch. It could prove
# the global batch divisble for distribution strategy.
int(batch_size // num_replicas // max_length * num_replicas),
([max_length], [max_length]),
drop_remainder=True)
else:
# Group and batch such that each batch has examples of similar length.
# TODO(xunkai): _batch_examples might need to do something special for
# num_replicas.
dataset = _batch_examples(dataset, batch_size, max_length)
dataset = dataset.repeat(repeat)
# Prefetch the next element to improve speed of input pipeline.
dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
return dataset
def _generate_synthetic_data(params):
"""Create synthetic data based on the parameter batch size."""
batch_size = int(params["batch_size"] // params["max_length"])
length = params["max_length"]
dataset = model_helpers.generate_synthetic_data(
input_shape=tf.TensorShape([length]),
input_value=1,
input_dtype=tf.int64,
label_shape=tf.TensorShape([length]),
label_value=1,
label_dtype=tf.int64,
)
if params["static_batch"]:
dataset = dataset.batch(batch_size, drop_remainder=True)
else:
dataset = dataset.padded_batch(batch_size, ([None], [None]))
return dataset
def train_input_fn(params, ctx=None):
"""Load and return dataset of batched examples for use during training."""
file_pattern = os.path.join(params["data_dir"] or "", "*train*")
if params["use_synthetic_data"]:
return _generate_synthetic_data(params)
return _read_and_batch_from_files(
file_pattern,
params["batch_size"],
params["max_length"],
params["max_io_parallelism"],
shuffle=True,
repeat=params["repeat_dataset"],
static_batch=params["static_batch"],
num_replicas=params["num_gpus"],
ctx=ctx)
def eval_input_fn(params, ctx=None):
"""Load and return dataset of batched examples for use during evaluation."""
file_pattern = os.path.join(params["data_dir"] or "", "*dev*")
if params["use_synthetic_data"]:
return _generate_synthetic_data(params)
return _read_and_batch_from_files(
file_pattern,
params["batch_size"],
params["max_length"],
params["max_io_parallelism"],
shuffle=False,
repeat=1,
static_batch=params["static_batch"],
num_replicas=params["num_gpus"],
ctx=ctx)
def map_data_for_transformer_fn(x, y):
"""Maps data for training, and handles weried behaviors for different vers."""
# Will transform input x and targets y into tuple(x, y) as new model inputs.
# For TF v2, the 2nd parameter is omitted to make Keras training work.
return ((x, y),)
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of embedding layer with shared weights."""
import tensorflow as tf
class EmbeddingSharedWeights(tf.keras.layers.Layer):
"""Calculates input embeddings and pre-softmax linear with shared weights."""
def __init__(self, vocab_size, hidden_size):
"""Specify characteristic parameters of embedding layer.
Args:
vocab_size: Number of tokens in the embedding. (Typically ~32,000)
hidden_size: Dimensionality of the embedding. (Typically 512 or 1024)
"""
super(EmbeddingSharedWeights, self).__init__()
self.vocab_size = vocab_size
self.hidden_size = hidden_size
def build(self, input_shape):
"""Build embedding layer."""
with tf.name_scope("embedding_and_softmax"):
# Create and initialize weights. The random normal initializer was chosen
# arbitrarily, and works well.
self.shared_weights = self.add_weight(
"weights",
shape=[self.vocab_size, self.hidden_size],
dtype=tf.float32,
initializer=tf.random_normal_initializer(
mean=0., stddev=self.hidden_size**-0.5))
super(EmbeddingSharedWeights, self).build(input_shape)
def get_config(self):
return {
"vocab_size": self.vocab_size,
"hidden_size": self.hidden_size,
}
def call(self, inputs, mode="embedding"):
"""Get token embeddings of inputs.
Args:
inputs: An int64 tensor with shape [batch_size, length]
mode: string, a valid value is one of "embedding" and "linear".
Returns:
outputs: (1) If mode == "embedding", output embedding tensor, float32 with
shape [batch_size, length, embedding_size]; (2) mode == "linear", output
linear tensor, float32 with shape [batch_size, length, vocab_size].
Raises:
ValueError: if mode is not valid.
"""
if mode == "embedding":
return self._embedding(inputs)
elif mode == "linear":
return self._linear(inputs)
else:
raise ValueError("mode {} is not valid.".format(mode))
def _embedding(self, inputs):
"""Applies embedding based on inputs tensor."""
with tf.name_scope("embedding"):
# Create binary mask of size [batch_size, length]
embeddings = tf.gather(self.shared_weights, inputs)
# mask = tf.cast(tf.not_equal(inputs, 0), embeddings.dtype)
# embeddings *= tf.expand_dims(mask, -1)
# Scale embedding by the sqrt of the hidden size
embeddings *= self.hidden_size**0.5
return embeddings
def _linear(self, inputs):
"""Computes logits by running inputs through a linear layer.
Args:
inputs: A float32 tensor with shape [batch_size, length, hidden_size]
Returns:
float32 tensor with shape [batch_size, length, vocab_size].
"""
with tf.name_scope("presoftmax_linear"):
batch_size = tf.shape(inputs)[0]
length = tf.shape(inputs)[1]
x = tf.reshape(inputs, [-1, self.hidden_size])
logits = tf.matmul(x, self.shared_weights, transpose_b=True)
return tf.reshape(logits, [batch_size, length, self.vocab_size])
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of fully connected network."""
import tensorflow as tf
class FeedForwardNetwork(tf.keras.layers.Layer):
"""Fully connected feedforward network."""
def __init__(self, hidden_size, filter_size, relu_dropout):
"""Initialize FeedForwardNetwork.
Args:
hidden_size: int, output dim of hidden layer.
filter_size: int, filter size for the inner (first) dense layer.
relu_dropout: float, dropout rate for training.
"""
super(FeedForwardNetwork, self).__init__()
self.hidden_size = hidden_size
self.filter_size = filter_size
self.relu_dropout = relu_dropout
def build(self, input_shape):
self.filter_dense_layer = tf.keras.layers.Dense(
self.filter_size,
use_bias=True,
activation=tf.nn.relu,
name="filter_layer")
self.output_dense_layer = tf.keras.layers.Dense(
self.hidden_size, use_bias=True, name="output_layer")
super(FeedForwardNetwork, self).build(input_shape)
def get_config(self):
return {
"hidden_size": self.hidden_size,
"filter_size": self.filter_size,
"relu_dropout": self.relu_dropout,
}
def call(self, x, training):
"""Return outputs of the feedforward network.
Args:
x: tensor with shape [batch_size, length, hidden_size]
training: boolean, whether in training mode or not.
Returns:
Output of the feedforward network.
tensor with shape [batch_size, length, hidden_size]
"""
# Retrieve dynamically known shapes
output = self.filter_dense_layer(x)
if training:
output = tf.nn.dropout(output, rate=self.relu_dropout)
output = self.output_dense_layer(output)
return output
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Functions for calculating loss, accuracy, and other model metrics.
Metrics:
- Padded loss, accuracy, and negative log perplexity. Source:
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/metrics.py
- BLEU approximation. Source:
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/bleu_hook.py
- ROUGE score. Source:
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/rouge.py
"""
import functools
import tensorflow as tf
def _pad_tensors_to_same_length(x, y):
"""Pad x and y so that the results have the same length (second dimension)."""
with tf.name_scope("pad_to_same_length"):
x_length = tf.shape(x)[1]
y_length = tf.shape(y)[1]
max_length = tf.maximum(x_length, y_length)
x = tf.pad(x, [[0, 0], [0, max_length - x_length], [0, 0]])
y = tf.pad(y, [[0, 0], [0, max_length - y_length]])
return x, y
def padded_cross_entropy_loss(logits, labels, smoothing, vocab_size):
"""Calculate cross entropy loss while ignoring padding.
Args:
logits: Tensor of size [batch_size, length_logits, vocab_size]
labels: Tensor of size [batch_size, length_labels]
smoothing: Label smoothing constant, used to determine the on and off values
vocab_size: int size of the vocabulary
Returns:
Returns the cross entropy loss and weight tensors: float32 tensors with
shape [batch_size, max(length_logits, length_labels)]
"""
with tf.name_scope("loss"):
logits, labels = _pad_tensors_to_same_length(logits, labels)
# Calculate smoothing cross entropy
with tf.name_scope("smoothing_cross_entropy"):
confidence = 1.0 - smoothing
low_confidence = (1.0 - confidence) / tf.cast(vocab_size - 1, tf.float32)
soft_targets = tf.one_hot(
tf.cast(labels, tf.int32),
depth=vocab_size,
on_value=confidence,
off_value=low_confidence)
xentropy = tf.nn.softmax_cross_entropy_with_logits(
logits=logits, labels=soft_targets)
# Calculate the best (lowest) possible value of cross entropy, and
# subtract from the cross entropy loss.
normalizing_constant = -(
confidence * tf.math.log(confidence) +
tf.cast(vocab_size - 1, tf.float32) * low_confidence *
tf.math.log(low_confidence + 1e-20))
xentropy -= normalizing_constant
weights = tf.cast(tf.not_equal(labels, 0), tf.float32)
return xentropy * weights, weights
def padded_accuracy(logits, labels):
"""Percentage of times that predictions matches labels on non-0s."""
with tf.name_scope("padded_accuracy"):
logits, labels = _pad_tensors_to_same_length(logits, labels)
weights = tf.cast(tf.not_equal(labels, 0), tf.float32)
outputs = tf.cast(tf.argmax(logits, axis=-1), tf.int32)
padded_labels = tf.cast(labels, tf.int32)
return tf.cast(tf.equal(outputs, padded_labels), tf.float32), weights
def padded_accuracy_topk(logits, labels, k):
"""Percentage of times that top-k predictions matches labels on non-0s."""
with tf.name_scope("padded_accuracy_topk"):
logits, labels = _pad_tensors_to_same_length(logits, labels)
weights = tf.cast(tf.not_equal(labels, 0), tf.float32)
effective_k = tf.minimum(k, tf.shape(logits)[-1])
_, outputs = tf.nn.top_k(logits, k=effective_k)
outputs = tf.cast(outputs, tf.int32)
padded_labels = tf.cast(labels, tf.int32)
padded_labels = tf.expand_dims(padded_labels, axis=-1)
padded_labels += tf.zeros_like(outputs) # Pad to same shape.
same = tf.cast(tf.equal(outputs, padded_labels), tf.float32)
same_topk = tf.reduce_sum(same, axis=-1)
return same_topk, weights
def padded_accuracy_top5(logits, labels):
return padded_accuracy_topk(logits, labels, 5)
def padded_sequence_accuracy(logits, labels):
"""Percentage of times that predictions matches labels everywhere (non-0)."""
with tf.name_scope("padded_sequence_accuracy"):
logits, labels = _pad_tensors_to_same_length(logits, labels)
weights = tf.cast(tf.not_equal(labels, 0), tf.float32)
outputs = tf.cast(tf.argmax(logits, axis=-1), tf.int32)
padded_labels = tf.cast(labels, tf.int32)
not_correct = tf.cast(tf.not_equal(outputs, padded_labels),
tf.float32) * weights
axis = list(range(1, len(outputs.get_shape())))
correct_seq = 1.0 - tf.minimum(1.0, tf.reduce_sum(not_correct, axis=axis))
return correct_seq, tf.constant(1.0)
def padded_neg_log_perplexity(logits, labels, vocab_size):
"""Average log-perplexity excluding padding 0s. No smoothing."""
num, den = padded_cross_entropy_loss(logits, labels, 0, vocab_size)
return -num, den
class MetricLayer(tf.keras.layers.Layer):
"""Custom a layer of metrics for Transformer model."""
def __init__(self, vocab_size):
super(MetricLayer, self).__init__()
self.vocab_size = vocab_size
self.metric_mean_fns = []
def build(self, input_shape):
""""Builds metric layer."""
neg_log_perplexity = functools.partial(
padded_neg_log_perplexity, vocab_size=self.vocab_size)
self.metric_mean_fns = [
(tf.keras.metrics.Mean("accuracy"), padded_accuracy),
(tf.keras.metrics.Mean("accuracy_top5"), padded_accuracy_top5),
(tf.keras.metrics.Mean("accuracy_per_sequence"),
padded_sequence_accuracy),
(tf.keras.metrics.Mean("neg_log_perplexity"), neg_log_perplexity),
]
super(MetricLayer, self).build(input_shape)
def get_config(self):
return {"vocab_size": self.vocab_size}
def call(self, inputs):
logits, targets = inputs[0], inputs[1]
for mean, fn in self.metric_mean_fns:
m = mean(*fn(logits, targets))
self.add_metric(m)
return logits
def transformer_loss(logits, labels, smoothing, vocab_size):
"""Calculates total loss containing cross entropy with padding ignored.
Args:
logits: Tensor of size [batch_size, length_logits, vocab_size]
labels: Tensor of size [batch_size, length_labels]
smoothing: Label smoothing constant, used to determine the on and off values
vocab_size: int size of the vocabulary
Returns:
A scalar float tensor for loss.
"""
xentropy, weights = padded_cross_entropy_loss(logits, labels, smoothing,
vocab_size)
return tf.reduce_sum(xentropy) / tf.reduce_sum(weights)
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Misc for Transformer."""
# pylint: disable=g-bad-import-order
from absl import flags
import tensorflow as tf
from official.legacy.transformer import model_params
from official.utils.flags import core as flags_core
from official.utils.misc import keras_utils
FLAGS = flags.FLAGS
PARAMS_MAP = {
'tiny': model_params.TINY_PARAMS,
'base': model_params.BASE_PARAMS,
'big': model_params.BIG_PARAMS,
}
def get_model_params(param_set, num_gpus):
"""Gets predefined model params."""
if num_gpus > 1:
if param_set == 'big':
return model_params.BIG_MULTI_GPU_PARAMS.copy()
elif param_set == 'base':
return model_params.BASE_MULTI_GPU_PARAMS.copy()
else:
raise ValueError('Not valid params: param_set={} num_gpus={}'.format(
param_set, num_gpus))
return PARAMS_MAP[param_set].copy()
def define_transformer_flags():
"""Add flags and flag validators for running transformer_main."""
# Add common flags (data_dir, model_dir, etc.).
flags_core.define_base(num_gpu=True, distribution_strategy=True)
flags_core.define_performance(
num_parallel_calls=True,
inter_op=False,
intra_op=False,
synthetic_data=True,
max_train_steps=False,
dtype=True,
loss_scale=True,
all_reduce_alg=True,
num_packs=True,
tf_gpu_thread_mode=True,
datasets_num_private_threads=True,
enable_xla=True,
fp16_implementation=True)
flags_core.define_benchmark()
flags_core.define_device(tpu=True)
flags.DEFINE_integer(
name='train_steps',
short_name='ts',
default=300000,
help=flags_core.help_wrap('The number of steps used to train.'))
flags.DEFINE_integer(
name='steps_between_evals',
short_name='sbe',
default=5000,
help=flags_core.help_wrap(
'The Number of training steps to run between evaluations. This is '
'used if --train_steps is defined.'))
flags.DEFINE_boolean(
name='enable_time_history',
default=True,
help='Whether to enable TimeHistory callback.')
flags.DEFINE_boolean(
name='enable_tensorboard',
default=False,
help='Whether to enable Tensorboard callback.')
flags.DEFINE_boolean(
name='enable_metrics_in_training',
default=False,
help='Whether to enable metrics during training.')
flags.DEFINE_boolean(
name='enable_mlir_bridge',
default=False,
help='Whether to enable the TF to XLA bridge.')
# Set flags from the flags_core module as 'key flags' so they're listed when
# the '-h' flag is used. Without this line, the flags defined above are
# only shown in the full `--helpful` help text.
flags.adopt_module_key_flags(flags_core)
# Add transformer-specific flags
flags.DEFINE_enum(
name='param_set',
short_name='mp',
default='big',
enum_values=PARAMS_MAP.keys(),
help=flags_core.help_wrap(
'Parameter set to use when creating and training the model. The '
'parameters define the input shape (batch size and max length), '
'model configuration (size of embedding, # of hidden layers, etc.), '
'and various other settings. The big parameter set increases the '
'default batch size, embedding/hidden size, and filter size. For a '
'complete list of parameters, please see model/model_params.py.'))
flags.DEFINE_bool(
name='static_batch',
short_name='sb',
default=False,
help=flags_core.help_wrap(
'Whether the batches in the dataset should have static shapes. In '
'general, this setting should be False. Dynamic shapes allow the '
'inputs to be grouped so that the number of padding tokens is '
'minimized, and helps model training. In cases where the input shape '
'must be static (e.g. running on TPU), this setting will be ignored '
'and static batching will always be used.'))
flags.DEFINE_integer(
name='max_length',
short_name='ml',
default=256,
help=flags_core.help_wrap(
'Max sentence length for Transformer. Default is 256. Note: Usually '
'it is more effective to use a smaller max length if static_batch is '
'enabled, e.g. 64.'))
# Flags for training with steps (may be used for debugging)
flags.DEFINE_integer(
name='validation_steps',
short_name='vs',
default=64,
help=flags_core.help_wrap('The number of steps used in validation.'))
# BLEU score computation
flags.DEFINE_string(
name='bleu_source',
short_name='bls',
default=None,
help=flags_core.help_wrap(
'Path to source file containing text translate when calculating the '
'official BLEU score. Both --bleu_source and --bleu_ref must be set. '
))
flags.DEFINE_string(
name='bleu_ref',
short_name='blr',
default=None,
help=flags_core.help_wrap(
'Path to source file containing text translate when calculating the '
'official BLEU score. Both --bleu_source and --bleu_ref must be set. '
))
flags.DEFINE_string(
name='vocab_file',
short_name='vf',
default=None,
help=flags_core.help_wrap(
'Path to subtoken vocabulary file. If data_download.py was used to '
'download and encode the training data, look in the data_dir to find '
'the vocab file.'))
flags.DEFINE_string(
name='mode',
default='train',
help=flags_core.help_wrap('mode: train, eval, or predict'))
flags.DEFINE_bool(
name='use_ctl',
default=False,
help=flags_core.help_wrap(
'Whether the model runs with custom training loop.'))
flags.DEFINE_integer(
name='decode_batch_size',
default=32,
help=flags_core.help_wrap(
'Global batch size used for Transformer autoregressive decoding on '
'TPU.'))
flags.DEFINE_integer(
name='decode_max_length',
default=97,
help=flags_core.help_wrap(
'Max sequence length of the decode/eval data. This is used by '
'Transformer autoregressive decoding on TPU to have minimum '
'paddings.'))
flags.DEFINE_bool(
name='padded_decode',
default=False,
help=flags_core.help_wrap(
'Whether the autoregressive decoding runs with input data padded to '
'the decode_max_length. For TPU/XLA-GPU runs, this flag has to be '
'set due the static shape requirement. Although CPU/GPU could also '
'use padded_decode, it has not been tested. In addition, this method '
'will introduce unnecessary overheads which grow quadratically with '
'the max sequence length.'))
flags.DEFINE_bool(
name='enable_checkpointing',
default=True,
help=flags_core.help_wrap(
'Whether to do checkpointing during training. When running under '
'benchmark harness, we will avoid checkpointing.'))
flags.DEFINE_bool(
name='save_weights_only',
default=True,
help=flags_core.help_wrap(
'Only used when above `enable_checkpointing` is True. '
'If True, then only the model\'s weights will be saved '
'(`model.save_weights(filepath)`), else the full model is saved '
'(`model.save(filepath)`)'))
flags_core.set_defaults(
data_dir='/tmp/translate_ende',
model_dir='/tmp/transformer_model',
batch_size=None)
# pylint: disable=unused-variable
@flags.multi_flags_validator(
['bleu_source', 'bleu_ref'],
message='Both or neither --bleu_source and --bleu_ref must be defined.')
def _check_bleu_files(flags_dict):
return (flags_dict['bleu_source'] is None) == (
flags_dict['bleu_ref'] is None)
@flags.multi_flags_validator(
['bleu_source', 'bleu_ref', 'vocab_file'],
message='--vocab_file must be defined if --bleu_source and --bleu_ref '
'are defined.')
def _check_bleu_vocab_file(flags_dict):
if flags_dict['bleu_source'] and flags_dict['bleu_ref']:
return flags_dict['vocab_file'] is not None
return True
# pylint: enable=unused-variable
def get_callbacks():
"""Returns common callbacks."""
callbacks = []
if FLAGS.enable_time_history:
time_callback = keras_utils.TimeHistory(
FLAGS.batch_size,
FLAGS.log_steps,
logdir=FLAGS.model_dir if FLAGS.enable_tensorboard else None)
callbacks.append(time_callback)
if FLAGS.enable_tensorboard:
tensorboard_callback = tf.keras.callbacks.TensorBoard(
log_dir=FLAGS.model_dir)
callbacks.append(tensorboard_callback)
return callbacks
def update_stats(history, stats, callbacks):
"""Normalizes and updates dictionary of stats.
Args:
history: Results of the training step.
stats: Dict with pre-existing training stats.
callbacks: a list of callbacks which might include a time history callback
used during keras.fit.
"""
if history and history.history:
train_hist = history.history
# Gets final loss from training.
stats['loss'] = float(train_hist['loss'][-1])
if not callbacks:
return
# Look for the time history callback which was used during keras.fit
for callback in callbacks:
if isinstance(callback, keras_utils.TimeHistory):
timestamp_log = callback.timestamp_log
stats['step_timestamp_log'] = timestamp_log
stats['train_finish_time'] = callback.train_finish_time
if len(timestamp_log) > 1:
stats['avg_exp_per_second'] = (
callback.batch_size * callback.log_steps *
(len(callback.timestamp_log) - 1) /
(timestamp_log[-1].timestamp - timestamp_log[0].timestamp))
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Defines Transformer model parameters."""
import collections
BASE_PARAMS = collections.defaultdict(
lambda: None, # Set default value to None.
# Input params
default_batch_size=2048, # Maximum number of tokens per batch of examples.
default_batch_size_tpu=32768,
max_length=256, # Maximum number of tokens per example.
# Model params
initializer_gain=1.0, # Used in trainable variable initialization.
vocab_size=33708, # Number of tokens defined in the vocabulary file.
hidden_size=512, # Model dimension in the hidden layers.
num_hidden_layers=6, # Number of layers in the encoder and decoder stacks.
num_heads=8, # Number of heads to use in multi-headed attention.
filter_size=2048, # Inner layer dimension in the feedforward network.
# Dropout values (only used when training)
layer_postprocess_dropout=0.1,
attention_dropout=0.1,
relu_dropout=0.1,
# Training params
label_smoothing=0.1,
learning_rate=2.0,
learning_rate_decay_rate=1.0,
learning_rate_warmup_steps=16000,
# Optimizer params
optimizer_adam_beta1=0.9,
optimizer_adam_beta2=0.997,
optimizer_adam_epsilon=1e-09,
# Default prediction params
extra_decode_length=50,
beam_size=4,
alpha=0.6, # used to calculate length normalization in beam search
# TPU specific parameters
use_tpu=False,
static_batch=False,
allow_ffn_pad=True,
)
BIG_PARAMS = BASE_PARAMS.copy()
BIG_PARAMS.update(
default_batch_size=4096,
# default batch size is smaller than for BASE_PARAMS due to memory limits.
default_batch_size_tpu=16384,
hidden_size=1024,
filter_size=4096,
num_heads=16,
)
# Parameters for running the model in multi gpu. These should not change the
# params that modify the model shape (such as the hidden_size or num_heads).
BASE_MULTI_GPU_PARAMS = BASE_PARAMS.copy()
BASE_MULTI_GPU_PARAMS.update(
learning_rate_warmup_steps=8000
)
BIG_MULTI_GPU_PARAMS = BIG_PARAMS.copy()
BIG_MULTI_GPU_PARAMS.update(
layer_postprocess_dropout=0.3,
learning_rate_warmup_steps=8000
)
# Parameters for testing the model
TINY_PARAMS = BASE_PARAMS.copy()
TINY_PARAMS.update(
default_batch_size=1024,
default_batch_size_tpu=1024,
hidden_size=32,
num_heads=4,
filter_size=256,
)
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transformer model helper methods."""
import math
import numpy as np
import tensorflow as tf
# Very low numbers to represent -infinity. We do not actually use -Inf, since we
# want to be able to multiply these values by zero to get zero. (-Inf * 0 = NaN)
_NEG_INF_FP32 = -1e9
_NEG_INF_FP16 = np.finfo(np.float16).min
def get_position_encoding(length,
hidden_size,
min_timescale=1.0,
max_timescale=1.0e4):
"""Return positional encoding.
Calculates the position encoding as a mix of sine and cosine functions with
geometrically increasing wavelengths.
Defined and formulized in Attention is All You Need, section 3.5.
Args:
length: Sequence length.
hidden_size: Size of the
min_timescale: Minimum scale that will be applied at each position
max_timescale: Maximum scale that will be applied at each position
Returns:
Tensor with shape [length, hidden_size]
"""
# We compute the positional encoding in float32 even if the model uses
# float16, as many of the ops used, like log and exp, are numerically unstable
# in float16.
position = tf.cast(tf.range(length), tf.float32)
num_timescales = hidden_size // 2
log_timescale_increment = (
math.log(float(max_timescale) / float(min_timescale)) /
(tf.cast(num_timescales, tf.float32) - 1))
inv_timescales = min_timescale * tf.exp(
tf.cast(tf.range(num_timescales), tf.float32) * -log_timescale_increment)
scaled_time = tf.expand_dims(position, 1) * tf.expand_dims(inv_timescales, 0)
signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
return signal
def get_decoder_self_attention_bias(length, dtype=tf.float32):
"""Calculate bias for decoder that maintains model's autoregressive property.
Creates a tensor that masks out locations that correspond to illegal
connections, so prediction at position i cannot draw information from future
positions.
Args:
length: int length of sequences in batch.
dtype: The dtype of the return value.
Returns:
float tensor of shape [1, 1, length, length]
"""
neg_inf = _NEG_INF_FP16 if dtype == tf.float16 else _NEG_INF_FP32
with tf.name_scope("decoder_self_attention_bias"):
valid_locs = tf.linalg.band_part(
tf.ones([length, length], dtype=dtype), -1, 0)
valid_locs = tf.reshape(valid_locs, [1, 1, length, length])
decoder_bias = neg_inf * (1.0 - valid_locs)
return decoder_bias
def get_padding(x, padding_value=0, dtype=tf.float32):
"""Return float tensor representing the padding values in x.
Args:
x: int tensor with any shape
padding_value: int which represents padded values in input
dtype: The dtype of the return value.
Returns:
float tensor with same shape as x containing values 0 or 1.
0 -> non-padding, 1 -> padding
"""
with tf.name_scope("padding"):
return tf.cast(tf.equal(x, padding_value), dtype)
def get_padding_bias(x, padding_value=0, dtype=tf.float32):
"""Calculate bias tensor from padding values in tensor.
Bias tensor that is added to the pre-softmax multi-headed attention logits,
which has shape [batch_size, num_heads, length, length]. The tensor is zero at
non-padding locations, and -1e9 (negative infinity) at padding locations.
Args:
x: int tensor with shape [batch_size, length]
padding_value: int which represents padded values in input
dtype: The dtype of the return value
Returns:
Attention bias tensor of shape [batch_size, 1, 1, length].
"""
with tf.name_scope("attention_bias"):
padding = get_padding(x, padding_value, dtype)
attention_bias = padding * _NEG_INF_FP32
attention_bias = tf.expand_dims(
tf.expand_dims(attention_bias, axis=1), axis=1)
return attention_bias
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test Transformer model helper methods."""
import tensorflow as tf
from official.legacy.transformer import model_utils
NEG_INF = -1e9
class ModelUtilsTest(tf.test.TestCase):
def test_get_padding(self):
x = tf.constant([[1, 0, 0, 0, 2], [3, 4, 0, 0, 0], [0, 5, 6, 0, 7]])
padding = model_utils.get_padding(x, padding_value=0)
self.assertAllEqual([[0, 1, 1, 1, 0], [0, 0, 1, 1, 1], [1, 0, 0, 1, 0]],
padding)
def test_get_padding_bias(self):
x = tf.constant([[1, 0, 0, 0, 2], [3, 4, 0, 0, 0], [0, 5, 6, 0, 7]])
bias = model_utils.get_padding_bias(x)
bias_shape = tf.shape(bias)
flattened_bias = tf.reshape(bias, [3, 5])
self.assertAllEqual(
[[0, NEG_INF, NEG_INF, NEG_INF, 0], [0, 0, NEG_INF, NEG_INF, NEG_INF],
[NEG_INF, 0, 0, NEG_INF, 0]], flattened_bias)
self.assertAllEqual([3, 1, 1, 5], bias_shape)
def test_get_decoder_self_attention_bias(self):
length = 5
bias = model_utils.get_decoder_self_attention_bias(length)
self.assertAllEqual(
[[[[0, NEG_INF, NEG_INF, NEG_INF, NEG_INF],
[0, 0, NEG_INF, NEG_INF, NEG_INF], [0, 0, 0, NEG_INF, NEG_INF],
[0, 0, 0, 0, NEG_INF], [0, 0, 0, 0, 0]]]], bias)
if __name__ == "__main__":
tf.test.main()
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Optimizer from addons and learning rate scheduler."""
import tensorflow as tf
class LearningRateSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
"""Learning rate schedule."""
def __init__(self, initial_learning_rate, hidden_size, warmup_steps):
"""Initialize configuration of the learning rate schedule.
Args:
initial_learning_rate: A float, the initial learning rate.
hidden_size: An integer, the model dimension in the hidden layers.
warmup_steps: An integer, the number of steps required for linear warmup.
"""
super(LearningRateSchedule, self).__init__()
self.initial_learning_rate = initial_learning_rate
self.hidden_size = hidden_size
self.warmup_steps = warmup_steps
self.warmup_steps_tensor = tf.cast(warmup_steps, tf.float32)
def __call__(self, global_step):
"""Calculate learning rate with linear warmup and rsqrt decay.
Args:
global_step: An integer, the current global step used for learning rate
calculation.
Returns:
A float, the learning rate needs to be used for current global step.
"""
with tf.name_scope('learning_rate_schedule'):
global_step = tf.cast(global_step, tf.float32)
learning_rate = self.initial_learning_rate
learning_rate *= (self.hidden_size**-0.5)
# Apply linear warmup
learning_rate *= tf.minimum(1.0, global_step / self.warmup_steps_tensor)
# Apply rsqrt decay
learning_rate /= tf.sqrt(
tf.maximum(global_step, self.warmup_steps_tensor))
return learning_rate
def get_config(self):
"""Get the configuration of the learning rate schedule."""
return {
'initial_learning_rate': self.initial_learning_rate,
'hidden_size': self.hidden_size,
'warmup_steps': self.warmup_steps,
}
This diff is collapsed.
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Forward pass test for Transformer model refactoring."""
import numpy as np
import tensorflow as tf
from official.legacy.transformer import metrics
from official.legacy.transformer import model_params
from official.legacy.transformer import transformer
from official.nlp.modeling import models
def _count_params(layer, trainable_only=True):
"""Returns the count of all model parameters, or just trainable ones."""
if not trainable_only:
return layer.count_params()
else:
return int(
np.sum([
tf.keras.backend.count_params(p) for p in layer.trainable_weights
]))
def _create_model(params, is_train):
"""Creates transformer model."""
encdec_kwargs = dict(
num_layers=params["num_hidden_layers"],
num_attention_heads=params["num_heads"],
intermediate_size=params["filter_size"],
activation="relu",
dropout_rate=params["relu_dropout"],
attention_dropout_rate=params["attention_dropout"],
use_bias=False,
norm_first=True,
norm_epsilon=1e-6,
intermediate_dropout=params["relu_dropout"])
encoder_layer = models.TransformerEncoder(**encdec_kwargs)
decoder_layer = models.TransformerDecoder(**encdec_kwargs)
model_kwargs = dict(
vocab_size=params["vocab_size"],
embedding_width=params["hidden_size"],
dropout_rate=params["layer_postprocess_dropout"],
padded_decode=params["padded_decode"],
decode_max_length=params["decode_max_length"],
dtype=params["dtype"],
extra_decode_length=params["extra_decode_length"],
beam_size=params["beam_size"],
alpha=params["alpha"],
encoder_layer=encoder_layer,
decoder_layer=decoder_layer,
name="transformer_v2")
if is_train:
inputs = tf.keras.layers.Input((None,), dtype="int64", name="inputs")
targets = tf.keras.layers.Input((None,), dtype="int64", name="targets")
internal_model = models.Seq2SeqTransformer(**model_kwargs)
logits = internal_model(
dict(inputs=inputs, targets=targets), training=is_train)
vocab_size = params["vocab_size"]
label_smoothing = params["label_smoothing"]
if params["enable_metrics_in_training"]:
logits = metrics.MetricLayer(vocab_size)([logits, targets])
logits = tf.keras.layers.Lambda(
lambda x: x, name="logits", dtype=tf.float32)(
logits)
model = tf.keras.Model([inputs, targets], logits)
loss = metrics.transformer_loss(logits, targets, label_smoothing,
vocab_size)
model.add_loss(loss)
return model
batch_size = params["decode_batch_size"] if params["padded_decode"] else None
inputs = tf.keras.layers.Input((None,),
batch_size=batch_size,
dtype="int64",
name="inputs")
internal_model = models.Seq2SeqTransformer(**model_kwargs)
ret = internal_model(dict(inputs=inputs), training=is_train)
outputs, scores = ret["outputs"], ret["scores"]
return tf.keras.Model(inputs, [outputs, scores])
class TransformerForwardTest(tf.test.TestCase):
def setUp(self):
super(TransformerForwardTest, self).setUp()
self.params = params = model_params.TINY_PARAMS
params["batch_size"] = params["default_batch_size"] = 16
params["hidden_size"] = 12
params["num_hidden_layers"] = 3
params["filter_size"] = 14
params["num_heads"] = 2
params["vocab_size"] = 41
params["extra_decode_length"] = 0
params["beam_size"] = 3
params["dtype"] = tf.float32
params["layer_postprocess_dropout"] = 0.0
params["attention_dropout"] = 0.0
params["relu_dropout"] = 0.0
def test_forward_pass_train(self):
# Set input_len different from target_len
inputs = np.asarray([[5, 2, 1], [7, 5, 0], [1, 4, 0], [7, 5, 11]])
targets = np.asarray([[4, 3, 4, 0], [13, 19, 17, 8], [20, 14, 1, 2],
[5, 7, 3, 0]])
# src_model is the original model before refactored.
src_model = transformer.create_model(self.params, True)
src_num_weights = _count_params(src_model)
src_weights = src_model.get_weights()
src_model_output = src_model([inputs, targets], training=True)
# dest_model is the refactored model.
dest_model = _create_model(self.params, True)
dest_num_weights = _count_params(dest_model)
self.assertEqual(src_num_weights, dest_num_weights)
dest_model.set_weights(src_weights)
dest_model_output = dest_model([inputs, targets], training=True)
self.assertAllEqual(src_model_output, dest_model_output)
def test_forward_pass_not_train(self):
inputs = np.asarray([[5, 2, 1], [7, 5, 0], [1, 4, 0], [7, 5, 11]])
# src_model is the original model before refactored.
src_model = transformer.create_model(self.params, False)
src_num_weights = _count_params(src_model)
src_weights = src_model.get_weights()
src_model_output = src_model([inputs], training=False)
# dest_model is the refactored model.
dest_model = _create_model(self.params, False)
dest_num_weights = _count_params(dest_model)
self.assertEqual(src_num_weights, dest_num_weights)
dest_model.set_weights(src_weights)
dest_model_output = dest_model([inputs], training=False)
self.assertAllEqual(src_model_output[0], dest_model_output[0])
self.assertAllEqual(src_model_output[1], dest_model_output[1])
if __name__ == "__main__":
tf.test.main()
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for layers in Transformer."""
import tensorflow as tf
from official.legacy.transformer import attention_layer
from official.legacy.transformer import embedding_layer
from official.legacy.transformer import ffn_layer
from official.legacy.transformer import metrics
class TransformerLayersTest(tf.test.TestCase):
def test_attention_layer(self):
hidden_size = 64
num_heads = 4
dropout = 0.5
dim_per_head = hidden_size // num_heads
layer = attention_layer.SelfAttention(hidden_size, num_heads, dropout)
self.assertDictEqual(
layer.get_config(), {
"hidden_size": hidden_size,
"num_heads": num_heads,
"attention_dropout": dropout,
})
length = 2
x = tf.ones([1, length, hidden_size])
bias = tf.ones([1])
cache = {
"k": tf.zeros([1, 0, num_heads, dim_per_head]),
"v": tf.zeros([1, 0, num_heads, dim_per_head]),
}
y = layer(x, bias, training=True, cache=cache)
self.assertEqual(y.shape, (
1,
length,
64,
))
self.assertEqual(cache["k"].shape, (
1,
length,
num_heads,
dim_per_head,
))
self.assertEqual(cache["v"].shape, (
1,
length,
num_heads,
dim_per_head,
))
def test_embedding_shared_weights(self):
vocab_size = 50
hidden_size = 64
length = 2
layer = embedding_layer.EmbeddingSharedWeights(vocab_size, hidden_size)
self.assertDictEqual(layer.get_config(), {
"vocab_size": 50,
"hidden_size": 64,
})
idx = tf.ones([1, length], dtype="int32")
y = layer(idx)
self.assertEqual(y.shape, (
1,
length,
hidden_size,
))
x = tf.ones([1, length, hidden_size])
output = layer(x, "linear")
self.assertEqual(output.shape, (
1,
length,
vocab_size,
))
def test_feed_forward_network(self):
hidden_size = 64
filter_size = 32
relu_dropout = 0.5
layer = ffn_layer.FeedForwardNetwork(hidden_size, filter_size, relu_dropout)
self.assertDictEqual(
layer.get_config(), {
"hidden_size": hidden_size,
"filter_size": filter_size,
"relu_dropout": relu_dropout,
})
length = 2
x = tf.ones([1, length, hidden_size])
y = layer(x, training=True)
self.assertEqual(y.shape, (
1,
length,
hidden_size,
))
def test_metric_layer(self):
vocab_size = 50
logits = tf.keras.layers.Input((None, vocab_size),
dtype="float32",
name="logits")
targets = tf.keras.layers.Input((None,), dtype="int64", name="targets")
output_logits = metrics.MetricLayer(vocab_size)([logits, targets])
self.assertEqual(output_logits.shape.as_list(), [
None,
None,
vocab_size,
])
if __name__ == "__main__":
tf.test.main()
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Train and evaluate the Transformer model.
See README for description of setting the training schedule and evaluating the
BLEU score.
"""
import os
import tempfile
# Import libraries
from absl import app
from absl import flags
from absl import logging
import tensorflow as tf
from official.common import distribute_utils
from official.legacy.transformer import compute_bleu
from official.legacy.transformer import data_pipeline
from official.legacy.transformer import metrics
from official.legacy.transformer import misc
from official.legacy.transformer import optimizer
from official.legacy.transformer import transformer
from official.legacy.transformer import translate
from official.legacy.transformer.utils import tokenizer
from official.modeling import performance
from official.utils.flags import core as flags_core
from official.utils.misc import keras_utils
# pylint:disable=logging-format-interpolation
INF = int(1e9)
BLEU_DIR = "bleu"
_SINGLE_SAMPLE = 1
def translate_and_compute_bleu(model,
params,
subtokenizer,
bleu_source,
bleu_ref,
distribution_strategy=None):
"""Translate file and report the cased and uncased bleu scores.
Args:
model: A Keras model, used to generate the translations.
params: A dictionary, containing the translation related parameters.
subtokenizer: A subtokenizer object, used for encoding and decoding source
and translated lines.
bleu_source: A file containing source sentences for translation.
bleu_ref: A file containing the reference for the translated sentences.
distribution_strategy: A platform distribution strategy, used for TPU based
translation.
Returns:
uncased_score: A float, the case insensitive BLEU score.
cased_score: A float, the case sensitive BLEU score.
"""
# Create temporary file to store translation.
tmp = tempfile.NamedTemporaryFile(delete=False)
tmp_filename = tmp.name
translate.translate_file(
model,
params,
subtokenizer,
bleu_source,
output_file=tmp_filename,
print_all_translations=False,
distribution_strategy=distribution_strategy)
# Compute uncased and cased bleu scores.
uncased_score = compute_bleu.bleu_wrapper(bleu_ref, tmp_filename, False)
cased_score = compute_bleu.bleu_wrapper(bleu_ref, tmp_filename, True)
os.remove(tmp_filename)
return uncased_score, cased_score
def evaluate_and_log_bleu(model,
params,
bleu_source,
bleu_ref,
vocab_file,
distribution_strategy=None):
"""Calculate and record the BLEU score.
Args:
model: A Keras model, used to generate the translations.
params: A dictionary, containing the translation related parameters.
bleu_source: A file containing source sentences for translation.
bleu_ref: A file containing the reference for the translated sentences.
vocab_file: A file containing the vocabulary for translation.
distribution_strategy: A platform distribution strategy, used for TPU based
translation.
Returns:
uncased_score: A float, the case insensitive BLEU score.
cased_score: A float, the case sensitive BLEU score.
"""
subtokenizer = tokenizer.Subtokenizer(vocab_file)
uncased_score, cased_score = translate_and_compute_bleu(
model, params, subtokenizer, bleu_source, bleu_ref, distribution_strategy)
logging.info("Bleu score (uncased): %s", uncased_score)
logging.info("Bleu score (cased): %s", cased_score)
return uncased_score, cased_score
class TransformerTask(object):
"""Main entry of Transformer model."""
def __init__(self, flags_obj):
"""Init function of TransformerMain.
Args:
flags_obj: Object containing parsed flag values, i.e., FLAGS.
Raises:
ValueError: if not using static batch for input data on TPU.
"""
self.flags_obj = flags_obj
self.predict_model = None
# Add flag-defined parameters to params object
num_gpus = flags_core.get_num_gpus(flags_obj)
self.params = params = misc.get_model_params(flags_obj.param_set, num_gpus)
params["num_gpus"] = num_gpus
params["use_ctl"] = flags_obj.use_ctl
params["data_dir"] = flags_obj.data_dir
params["model_dir"] = flags_obj.model_dir
params["static_batch"] = flags_obj.static_batch
params["max_length"] = flags_obj.max_length
params["decode_batch_size"] = flags_obj.decode_batch_size
params["decode_max_length"] = flags_obj.decode_max_length
params["padded_decode"] = flags_obj.padded_decode
params["max_io_parallelism"] = (
flags_obj.num_parallel_calls or tf.data.experimental.AUTOTUNE)
params["use_synthetic_data"] = flags_obj.use_synthetic_data
params["batch_size"] = flags_obj.batch_size or params["default_batch_size"]
params["repeat_dataset"] = None
params["dtype"] = flags_core.get_tf_dtype(flags_obj)
params["enable_tensorboard"] = flags_obj.enable_tensorboard
params["enable_metrics_in_training"] = flags_obj.enable_metrics_in_training
params["steps_between_evals"] = flags_obj.steps_between_evals
params["enable_checkpointing"] = flags_obj.enable_checkpointing
params["save_weights_only"] = flags_obj.save_weights_only
self.distribution_strategy = distribute_utils.get_distribution_strategy(
distribution_strategy=flags_obj.distribution_strategy,
num_gpus=num_gpus,
all_reduce_alg=flags_obj.all_reduce_alg,
num_packs=flags_obj.num_packs,
tpu_address=flags_obj.tpu or "")
if self.use_tpu:
params["num_replicas"] = self.distribution_strategy.num_replicas_in_sync
else:
logging.info("Running transformer with num_gpus = %d", num_gpus)
if self.distribution_strategy:
logging.info("For training, using distribution strategy: %s",
self.distribution_strategy)
else:
logging.info("Not using any distribution strategy.")
performance.set_mixed_precision_policy(params["dtype"])
@property
def use_tpu(self):
if self.distribution_strategy:
return isinstance(self.distribution_strategy, tf.distribute.TPUStrategy)
return False
def train(self):
"""Trains the model."""
params = self.params
flags_obj = self.flags_obj
# Sets config options.
keras_utils.set_session_config(enable_xla=flags_obj.enable_xla)
_ensure_dir(flags_obj.model_dir)
with distribute_utils.get_strategy_scope(self.distribution_strategy):
model = transformer.create_model(params, is_train=True)
opt = self._create_optimizer()
current_step = 0
checkpoint = tf.train.Checkpoint(model=model, optimizer=opt)
latest_checkpoint = tf.train.latest_checkpoint(flags_obj.model_dir)
if latest_checkpoint:
checkpoint.restore(latest_checkpoint)
logging.info("Loaded checkpoint %s", latest_checkpoint)
current_step = opt.iterations.numpy()
if params["use_ctl"]:
train_loss_metric = tf.keras.metrics.Mean(
"training_loss", dtype=tf.float32)
if params["enable_tensorboard"]:
summary_writer = tf.summary.create_file_writer(
os.path.join(flags_obj.model_dir, "summary"))
else:
summary_writer = tf.summary.create_noop_writer()
train_metrics = [train_loss_metric]
if params["enable_metrics_in_training"]:
train_metrics = train_metrics + model.metrics
else:
model.compile(opt)
model.summary()
if self.use_tpu:
# Different from experimental_distribute_dataset,
# distribute_datasets_from_function requires
# per-replica/local batch size.
params["batch_size"] /= self.distribution_strategy.num_replicas_in_sync
train_ds = (
self.distribution_strategy.distribute_datasets_from_function(
lambda ctx: data_pipeline.train_input_fn(params, ctx)))
else:
train_ds = data_pipeline.train_input_fn(params)
map_data_fn = data_pipeline.map_data_for_transformer_fn
train_ds = train_ds.map(
map_data_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE)
if params["use_ctl"]:
train_ds_iterator = iter(train_ds)
callbacks = self._create_callbacks(flags_obj.model_dir, params)
# Only TimeHistory callback is supported for CTL
if params["use_ctl"]:
callbacks = [cb for cb in callbacks
if isinstance(cb, keras_utils.TimeHistory)]
@tf.function
def train_steps(iterator, steps):
"""Training steps function for TPU runs.
Args:
iterator: The input iterator of the training dataset.
steps: An integer, the number of training steps.
Returns:
A float, the loss value.
"""
def _step_fn(inputs):
"""Per-replica step function."""
inputs, targets = inputs
with tf.GradientTape() as tape:
logits = model([inputs, targets], training=True)
loss = metrics.transformer_loss(logits, targets,
params["label_smoothing"],
params["vocab_size"])
# Scales the loss, which results in using the average loss across all
# of the replicas for backprop.
scaled_loss = loss / self.distribution_strategy.num_replicas_in_sync
# De-dupes variables due to keras tracking issues.
tvars = list({id(v): v for v in model.trainable_variables}.values())
grads = tape.gradient(scaled_loss, tvars)
opt.apply_gradients(zip(grads, tvars))
# For reporting, the metric takes the mean of losses.
train_loss_metric.update_state(loss)
for _ in tf.range(steps):
train_loss_metric.reset_states()
self.distribution_strategy.run(
_step_fn, args=(next(iterator),))
cased_score, uncased_score = None, None
cased_score_history, uncased_score_history = [], []
while current_step < flags_obj.train_steps:
remaining_steps = flags_obj.train_steps - current_step
train_steps_per_eval = (
remaining_steps if remaining_steps < flags_obj.steps_between_evals
else flags_obj.steps_between_evals)
current_iteration = current_step // flags_obj.steps_between_evals
logging.info(
"Start train iteration at global step:{}".format(current_step))
history = None
if params["use_ctl"]:
if not self.use_tpu:
raise NotImplementedError(
"Custom training loop on GPUs is not implemented.")
# Runs training steps.
with summary_writer.as_default():
for cb in callbacks:
cb.on_epoch_begin(current_iteration)
cb.on_batch_begin(0)
train_steps(
train_ds_iterator,
tf.convert_to_tensor(train_steps_per_eval, dtype=tf.int32))
current_step += train_steps_per_eval
train_loss = train_loss_metric.result().numpy().astype(float)
logging.info("Train Step: %d/%d / loss = %s", current_step,
flags_obj.train_steps, train_loss)
for cb in callbacks:
cb.on_batch_end(train_steps_per_eval - 1)
cb.on_epoch_end(current_iteration)
if params["enable_tensorboard"]:
for metric_obj in train_metrics:
tf.summary.scalar(metric_obj.name, metric_obj.result(),
current_step)
summary_writer.flush()
for cb in callbacks:
cb.on_train_end()
if flags_obj.enable_checkpointing:
# avoid check-pointing when running for benchmarking.
checkpoint_name = checkpoint.save(
os.path.join(flags_obj.model_dir,
"ctl_step_{}.ckpt".format(current_step)))
logging.info("Saved checkpoint to %s", checkpoint_name)
else:
if self.use_tpu:
raise NotImplementedError(
"Keras model.fit on TPUs is not implemented.")
history = model.fit(
train_ds,
initial_epoch=current_iteration,
epochs=current_iteration + 1,
steps_per_epoch=train_steps_per_eval,
callbacks=callbacks,
# If TimeHistory is enabled, progress bar would be messy. Increase
# the verbose level to get rid of it.
verbose=(2 if flags_obj.enable_time_history else 1))
current_step += train_steps_per_eval
logging.info("Train history: {}".format(history.history))
logging.info("End train iteration at global step:{}".format(current_step))
if (flags_obj.bleu_source and flags_obj.bleu_ref):
uncased_score, cased_score = self.eval()
cased_score_history.append([current_iteration + 1, cased_score])
uncased_score_history.append([current_iteration + 1, uncased_score])
stats = ({
"loss": train_loss
} if history is None else {})
misc.update_stats(history, stats, callbacks)
if uncased_score and cased_score:
stats["bleu_uncased"] = uncased_score
stats["bleu_cased"] = cased_score
stats["bleu_uncased_history"] = uncased_score_history
stats["bleu_cased_history"] = cased_score_history
return stats
def eval(self):
"""Evaluates the model."""
distribution_strategy = self.distribution_strategy if self.use_tpu else None
# We only want to create the model under DS scope for TPU case.
# When 'distribution_strategy' is None, a no-op DummyContextManager will
# be used.
with distribute_utils.get_strategy_scope(distribution_strategy):
if not self.predict_model:
self.predict_model = transformer.create_model(self.params, False)
self._load_weights_if_possible(
self.predict_model,
tf.train.latest_checkpoint(self.flags_obj.model_dir))
self.predict_model.summary()
return evaluate_and_log_bleu(
self.predict_model, self.params, self.flags_obj.bleu_source,
self.flags_obj.bleu_ref, self.flags_obj.vocab_file,
distribution_strategy)
def predict(self):
"""Predicts result from the model."""
params = self.params
flags_obj = self.flags_obj
with tf.name_scope("model"):
model = transformer.create_model(params, is_train=False)
self._load_weights_if_possible(
model, tf.train.latest_checkpoint(self.flags_obj.model_dir))
model.summary()
subtokenizer = tokenizer.Subtokenizer(flags_obj.vocab_file)
ds = data_pipeline.eval_input_fn(params)
ds = ds.map(lambda x, y: x).take(_SINGLE_SAMPLE)
ret = model.predict(ds)
val_outputs, _ = ret
length = len(val_outputs)
for i in range(length):
translate.translate_from_input(val_outputs[i], subtokenizer)
def _create_callbacks(self, cur_log_dir, params):
"""Creates a list of callbacks."""
callbacks = misc.get_callbacks()
if params["enable_checkpointing"]:
ckpt_full_path = os.path.join(cur_log_dir, "cp-{epoch:04d}.ckpt")
callbacks.append(
tf.keras.callbacks.ModelCheckpoint(
ckpt_full_path, save_weights_only=params["save_weights_only"]))
return callbacks
def _load_weights_if_possible(self, model, init_weight_path=None):
"""Loads model weights when it is provided."""
if init_weight_path:
logging.info("Load weights: {}".format(init_weight_path))
if self.use_tpu:
checkpoint = tf.train.Checkpoint(
model=model, optimizer=self._create_optimizer())
checkpoint.restore(init_weight_path)
else:
model.load_weights(init_weight_path)
else:
logging.info("Weights not loaded from path:{}".format(init_weight_path))
def _create_optimizer(self):
"""Creates optimizer."""
params = self.params
lr_schedule = optimizer.LearningRateSchedule(
params["learning_rate"], params["hidden_size"],
params["learning_rate_warmup_steps"])
opt = tf.keras.optimizers.Adam(
lr_schedule,
params["optimizer_adam_beta1"],
params["optimizer_adam_beta2"],
epsilon=params["optimizer_adam_epsilon"])
opt = performance.configure_optimizer(
opt,
use_float16=params["dtype"] == tf.float16,
loss_scale=flags_core.get_loss_scale(
self.flags_obj, default_for_fp16="dynamic"))
return opt
def _ensure_dir(log_dir):
"""Makes log dir if not existed."""
if not tf.io.gfile.exists(log_dir):
tf.io.gfile.makedirs(log_dir)
def main(_):
flags_obj = flags.FLAGS
if flags_obj.enable_mlir_bridge:
tf.config.experimental.enable_mlir_bridge()
task = TransformerTask(flags_obj)
# Execute flag override logic for better model performance
if flags_obj.tf_gpu_thread_mode:
keras_utils.set_gpu_thread_mode_and_count(
per_gpu_thread_count=flags_obj.per_gpu_thread_count,
gpu_thread_mode=flags_obj.tf_gpu_thread_mode,
num_gpus=flags_obj.num_gpus,
datasets_num_private_threads=flags_obj.datasets_num_private_threads)
if flags_obj.mode == "train":
task.train()
elif flags_obj.mode == "predict":
task.predict()
elif flags_obj.mode == "eval":
task.eval()
else:
raise ValueError("Invalid mode {}".format(flags_obj.mode))
if __name__ == "__main__":
logging.set_verbosity(logging.INFO)
misc.define_transformer_flags()
app.run(main)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment