Unverified Commit 8f6c3708 authored by Yukun Zhu's avatar Yukun Zhu Committed by GitHub
Browse files

Merge pull request #3602 from aquariusjay/master

Update dataset examples
parents af79775b 8e25697b
......@@ -42,6 +42,7 @@ A local training job using `xception_65` can be run with the following command:
# From tensorflow/models/research/
python deeplab/train.py \
--logtostderr \
--training_number_of_steps=90000 \
--train_split="train" \
--model_variant="xception_65" \
--atrous_rates=6 \
......@@ -52,6 +53,8 @@ python deeplab/train.py \
--train_crop_size=769 \
--train_crop_size=769 \
--train_batch_size=1 \
--dataset="cityscapes" \
--train_split="train" \
--tf_initial_checkpoints=${PATH_TO_INITIAL_CHECKPOINT} \
--train_logdir=${PATH_TO_TRAIN_DIR} \
--dataset_dir=${PATH_TO_DATASET}
......@@ -62,11 +65,14 @@ where ${PATH_TO_INITIAL_CHECKPOINT} is the path to the initial checkpoint
directory in which training checkpoints and events will be written to, and
${PATH_TO_DATASET} is the directory in which the Cityscapes dataset resides.
Note that for {train,eval,vis}.py:
**Note that for {train,eval,vis}.py**:
1. We use small batch size during training. The users could change it based on
the available GPU memory and also set `fine_tune_batch_norm` to be False or
True depending on the use case.
1. In order to reproduce our results, one needs to use large batch size (> 8),
and set fine_tune_batch_norm = True. Here, we simply use small batch size
during training for the purpose of demonstration. If the users have limited
GPU memory at hand, please fine-tune from our provided checkpoints whose
batch norm parameters have been trained, and use smaller learning rate with
fine_tune_batch_norm = False.
2. The users should change atrous_rates from [6, 12, 18] to [12, 24, 36] if
setting output_stride=8.
......@@ -90,6 +96,8 @@ python deeplab/eval.py \
--decoder_output_stride=4 \
--eval_crop_size=1025 \
--eval_crop_size=2049 \
--dataset="cityscapes" \
--eval_split="val" \
--checkpoint_dir=${PATH_TO_CHECKPOINT} \
--eval_logdir=${PATH_TO_EVAL_DIR} \
--dataset_dir=${PATH_TO_DATASET}
......@@ -116,6 +124,8 @@ python deeplab/vis.py \
--decoder_output_stride=4 \
--vis_crop_size=1025 \
--vis_crop_size=2049 \
--dataset="cityscapes" \
--vis_split="val" \
--colormap_type="cityscapes" \
--checkpoint_dir=${PATH_TO_CHECKPOINT} \
--vis_logdir=${PATH_TO_VIS_DIR} \
......
......@@ -44,6 +44,7 @@ A local training job using `xception_65` can be run with the following command:
# From tensorflow/models/research/
python deeplab/train.py \
--logtostderr \
--training_number_of_steps=30000 \
--train_split="train" \
--model_variant="xception_65" \
--atrous_rates=6 \
......@@ -54,6 +55,8 @@ python deeplab/train.py \
--train_crop_size=513 \
--train_crop_size=513 \
--train_batch_size=1 \
--dataset="pascal_voc_seg" \
--train_split="train" \
--tf_initial_checkpoints=${PATH_TO_INITIAL_CHECKPOINT} \
--train_logdir=${PATH_TO_TRAIN_DIR} \
--dataset_dir=${PATH_TO_DATASET}
......@@ -65,11 +68,14 @@ directory in which training checkpoints and events will be written to, and
${PATH_TO_DATASET} is the directory in which the PASCAL VOC 2012 dataset
resides.
Note that for {train,eval,vis}.py:
**Note that for {train,eval,vis}.py:**
1. We use small batch size during training. The users could change it based on
the available GPU memory and also set `fine_tune_batch_norm` to be False or
True depending on the use case.
1. In order to reproduce our results, one needs to use large batch size (> 12),
and set fine_tune_batch_norm = True. Here, we simply use small batch size
during training for the purpose of demonstration. If the users have limited
GPU memory at hand, please fine-tune from our provided checkpoints whose
batch norm parameters have been trained, and use smaller learning rate with
fine_tune_batch_norm = False.
2. The users should change atrous_rates from [6, 12, 18] to [12, 24, 36] if
setting output_stride=8.
......@@ -93,6 +99,8 @@ python deeplab/eval.py \
--decoder_output_stride=4 \
--eval_crop_size=513 \
--eval_crop_size=513 \
--dataset="pascal_voc_seg" \
--eval_split="val" \
--checkpoint_dir=${PATH_TO_CHECKPOINT} \
--eval_logdir=${PATH_TO_EVAL_DIR} \
--dataset_dir=${PATH_TO_DATASET}
......@@ -119,6 +127,8 @@ python deeplab/vis.py \
--decoder_output_stride=4 \
--vis_crop_size=513 \
--vis_crop_size=513 \
--dataset="pascal_voc_seg" \
--vis_split="val" \
--checkpoint_dir=${PATH_TO_CHECKPOINT} \
--vis_logdir=${PATH_TO_VIS_DIR} \
--dataset_dir=${PATH_TO_DATASET}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment