Commit 8e25697b authored by lcchen's avatar lcchen
Browse files

update dataset examples

parent 576a37d1
......@@ -42,14 +42,7 @@ A local training job using `xception_65` can be run with the following command:
# From tensorflow/models/research/
python deeplab/train.py \
--logtostderr \
<<<<<<< HEAD
<<<<<<< HEAD
=======
--training_number_of_steps=90000 \
>>>>>>> origin/master
=======
--training_number_of_steps=90000 \
>>>>>>> origin/master
--train_split="train" \
--model_variant="xception_65" \
--atrous_rates=6 \
......@@ -60,16 +53,8 @@ python deeplab/train.py \
--train_crop_size=769 \
--train_crop_size=769 \
--train_batch_size=1 \
<<<<<<< HEAD
<<<<<<< HEAD
=======
--dataset="cityscapes" \
--train_split="train" \
>>>>>>> origin/master
=======
--dataset="cityscapes" \
--train_split="train" \
>>>>>>> origin/master
--tf_initial_checkpoints=${PATH_TO_INITIAL_CHECKPOINT} \
--train_logdir=${PATH_TO_TRAIN_DIR} \
--dataset_dir=${PATH_TO_DATASET}
......@@ -80,16 +65,6 @@ where ${PATH_TO_INITIAL_CHECKPOINT} is the path to the initial checkpoint
directory in which training checkpoints and events will be written to, and
${PATH_TO_DATASET} is the directory in which the Cityscapes dataset resides.
<<<<<<< HEAD
<<<<<<< HEAD
Note that for {train,eval,vis}.py:
1. We use small batch size during training. The users could change it based on
the available GPU memory and also set `fine_tune_batch_norm` to be False or
True depending on the use case.
=======
=======
>>>>>>> origin/master
**Note that for {train,eval,vis}.py**:
1. In order to reproduce our results, one needs to use large batch size (> 8),
......@@ -98,10 +73,6 @@ Note that for {train,eval,vis}.py:
GPU memory at hand, please fine-tune from our provided checkpoints whose
batch norm parameters have been trained, and use smaller learning rate with
fine_tune_batch_norm = False.
<<<<<<< HEAD
>>>>>>> origin/master
=======
>>>>>>> origin/master
2. The users should change atrous_rates from [6, 12, 18] to [12, 24, 36] if
setting output_stride=8.
......@@ -125,16 +96,8 @@ python deeplab/eval.py \
--decoder_output_stride=4 \
--eval_crop_size=1025 \
--eval_crop_size=2049 \
<<<<<<< HEAD
<<<<<<< HEAD
=======
--dataset="cityscapes" \
--eval_split="val" \
>>>>>>> origin/master
=======
--dataset="cityscapes" \
--eval_split="val" \
>>>>>>> origin/master
--checkpoint_dir=${PATH_TO_CHECKPOINT} \
--eval_logdir=${PATH_TO_EVAL_DIR} \
--dataset_dir=${PATH_TO_DATASET}
......@@ -161,16 +124,8 @@ python deeplab/vis.py \
--decoder_output_stride=4 \
--vis_crop_size=1025 \
--vis_crop_size=2049 \
<<<<<<< HEAD
<<<<<<< HEAD
=======
--dataset="cityscapes" \
--vis_split="val" \
>>>>>>> origin/master
=======
--dataset="cityscapes" \
--vis_split="val" \
>>>>>>> origin/master
--colormap_type="cityscapes" \
--checkpoint_dir=${PATH_TO_CHECKPOINT} \
--vis_logdir=${PATH_TO_VIS_DIR} \
......
......@@ -44,14 +44,7 @@ A local training job using `xception_65` can be run with the following command:
# From tensorflow/models/research/
python deeplab/train.py \
--logtostderr \
<<<<<<< HEAD
<<<<<<< HEAD
=======
--training_number_of_steps=30000 \
>>>>>>> origin/master
=======
--training_number_of_steps=30000 \
>>>>>>> origin/master
--train_split="train" \
--model_variant="xception_65" \
--atrous_rates=6 \
......@@ -62,16 +55,8 @@ python deeplab/train.py \
--train_crop_size=513 \
--train_crop_size=513 \
--train_batch_size=1 \
<<<<<<< HEAD
<<<<<<< HEAD
=======
--dataset="pascal_voc_seg" \
--train_split="train" \
>>>>>>> origin/master
=======
--dataset="pascal_voc_seg" \
--train_split="train" \
>>>>>>> origin/master
--tf_initial_checkpoints=${PATH_TO_INITIAL_CHECKPOINT} \
--train_logdir=${PATH_TO_TRAIN_DIR} \
--dataset_dir=${PATH_TO_DATASET}
......@@ -83,16 +68,6 @@ directory in which training checkpoints and events will be written to, and
${PATH_TO_DATASET} is the directory in which the PASCAL VOC 2012 dataset
resides.
<<<<<<< HEAD
<<<<<<< HEAD
Note that for {train,eval,vis}.py:
1. We use small batch size during training. The users could change it based on
the available GPU memory and also set `fine_tune_batch_norm` to be False or
True depending on the use case.
=======
=======
>>>>>>> origin/master
**Note that for {train,eval,vis}.py:**
1. In order to reproduce our results, one needs to use large batch size (> 12),
......@@ -101,10 +76,6 @@ Note that for {train,eval,vis}.py:
GPU memory at hand, please fine-tune from our provided checkpoints whose
batch norm parameters have been trained, and use smaller learning rate with
fine_tune_batch_norm = False.
<<<<<<< HEAD
>>>>>>> origin/master
=======
>>>>>>> origin/master
2. The users should change atrous_rates from [6, 12, 18] to [12, 24, 36] if
setting output_stride=8.
......@@ -128,16 +99,8 @@ python deeplab/eval.py \
--decoder_output_stride=4 \
--eval_crop_size=513 \
--eval_crop_size=513 \
<<<<<<< HEAD
<<<<<<< HEAD
=======
--dataset="pascal_voc_seg" \
--eval_split="val" \
>>>>>>> origin/master
=======
--dataset="pascal_voc_seg" \
--eval_split="val" \
>>>>>>> origin/master
--checkpoint_dir=${PATH_TO_CHECKPOINT} \
--eval_logdir=${PATH_TO_EVAL_DIR} \
--dataset_dir=${PATH_TO_DATASET}
......@@ -164,16 +127,8 @@ python deeplab/vis.py \
--decoder_output_stride=4 \
--vis_crop_size=513 \
--vis_crop_size=513 \
<<<<<<< HEAD
<<<<<<< HEAD
=======
--dataset="pascal_voc_seg" \
--vis_split="val" \
>>>>>>> origin/master
=======
--dataset="pascal_voc_seg" \
--vis_split="val" \
>>>>>>> origin/master
--checkpoint_dir=${PATH_TO_CHECKPOINT} \
--vis_logdir=${PATH_TO_VIS_DIR} \
--dataset_dir=${PATH_TO_DATASET}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment