Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
8e25697b
Commit
8e25697b
authored
Mar 14, 2018
by
lcchen
Browse files
update dataset examples
parent
576a37d1
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
0 additions
and
90 deletions
+0
-90
research/deeplab/g3doc/cityscapes.md
research/deeplab/g3doc/cityscapes.md
+0
-45
research/deeplab/g3doc/pascal.md
research/deeplab/g3doc/pascal.md
+0
-45
No files found.
research/deeplab/g3doc/cityscapes.md
View file @
8e25697b
...
...
@@ -42,14 +42,7 @@ A local training job using `xception_65` can be run with the following command:
# From tensorflow/models/research/
python deeplab/train.py
\
--logtostderr
\
<<<<<<
< HEAD
<<<<<<
< HEAD
=======
--training_number_of_steps
=
90000
\
>>>>>>>
origin/master
=======
--training_number_of_steps
=
90000
\
>>>>>>>
origin/master
--train_split
=
"train"
\
--model_variant
=
"xception_65"
\
--atrous_rates
=
6
\
...
...
@@ -60,16 +53,8 @@ python deeplab/train.py \
--train_crop_size
=
769
\
--train_crop_size
=
769
\
--train_batch_size
=
1
\
<<<<<<
< HEAD
<<<<<<
< HEAD
=======
--dataset
=
"cityscapes"
\
--train_split
=
"train"
\
>>>>>>>
origin/master
=======
--dataset
=
"cityscapes"
\
--train_split
=
"train"
\
>>>>>>>
origin/master
--tf_initial_checkpoints
=
${
PATH_TO_INITIAL_CHECKPOINT
}
\
--train_logdir
=
${
PATH_TO_TRAIN_DIR
}
\
--dataset_dir
=
${
PATH_TO_DATASET
}
...
...
@@ -80,16 +65,6 @@ where ${PATH_TO_INITIAL_CHECKPOINT} is the path to the initial checkpoint
directory in which training checkpoints and events will be written to, and
${PATH_TO_DATASET} is the directory in which the Cityscapes dataset resides.
<<<<<<< HEAD
<<<<<<< HEAD
Note that for {train,eval,vis}.py:
1.
We use small batch size during training. The users could change it based on
the available GPU memory and also set
`fine_tune_batch_norm`
to be False or
True depending on the use case.
=======
=======
>>>>>>> origin/master
**Note that for {train,eval,vis}.py**
:
1.
In order to reproduce our results, one needs to use large batch size (> 8),
...
...
@@ -98,10 +73,6 @@ Note that for {train,eval,vis}.py:
GPU memory at hand, please fine-tune from our provided checkpoints whose
batch norm parameters have been trained, and use smaller learning rate with
fine_tune_batch_norm = False.
<<<<<<< HEAD
>>>>>>> origin/master
=======
>>>>>>> origin/master
2.
The users should change atrous_rates from [6, 12, 18] to [12, 24, 36] if
setting output_stride=8.
...
...
@@ -125,16 +96,8 @@ python deeplab/eval.py \
--decoder_output_stride
=
4
\
--eval_crop_size
=
1025
\
--eval_crop_size
=
2049
\
<<<<<<
< HEAD
<<<<<<
< HEAD
=======
--dataset
=
"cityscapes"
\
--eval_split
=
"val"
\
>>>>>>>
origin/master
=======
--dataset
=
"cityscapes"
\
--eval_split
=
"val"
\
>>>>>>>
origin/master
--checkpoint_dir
=
${
PATH_TO_CHECKPOINT
}
\
--eval_logdir
=
${
PATH_TO_EVAL_DIR
}
\
--dataset_dir
=
${
PATH_TO_DATASET
}
...
...
@@ -161,16 +124,8 @@ python deeplab/vis.py \
--decoder_output_stride
=
4
\
--vis_crop_size
=
1025
\
--vis_crop_size
=
2049
\
<<<<<<
< HEAD
<<<<<<
< HEAD
=======
--dataset
=
"cityscapes"
\
--vis_split
=
"val"
\
>>>>>>>
origin/master
=======
--dataset
=
"cityscapes"
\
--vis_split
=
"val"
\
>>>>>>>
origin/master
--colormap_type
=
"cityscapes"
\
--checkpoint_dir
=
${
PATH_TO_CHECKPOINT
}
\
--vis_logdir
=
${
PATH_TO_VIS_DIR
}
\
...
...
research/deeplab/g3doc/pascal.md
View file @
8e25697b
...
...
@@ -44,14 +44,7 @@ A local training job using `xception_65` can be run with the following command:
# From tensorflow/models/research/
python deeplab/train.py
\
--logtostderr
\
<<<<<<
< HEAD
<<<<<<
< HEAD
=======
--training_number_of_steps
=
30000
\
>>>>>>>
origin/master
=======
--training_number_of_steps
=
30000
\
>>>>>>>
origin/master
--train_split
=
"train"
\
--model_variant
=
"xception_65"
\
--atrous_rates
=
6
\
...
...
@@ -62,16 +55,8 @@ python deeplab/train.py \
--train_crop_size
=
513
\
--train_crop_size
=
513
\
--train_batch_size
=
1
\
<<<<<<
< HEAD
<<<<<<
< HEAD
=======
--dataset
=
"pascal_voc_seg"
\
--train_split
=
"train"
\
>>>>>>>
origin/master
=======
--dataset
=
"pascal_voc_seg"
\
--train_split
=
"train"
\
>>>>>>>
origin/master
--tf_initial_checkpoints
=
${
PATH_TO_INITIAL_CHECKPOINT
}
\
--train_logdir
=
${
PATH_TO_TRAIN_DIR
}
\
--dataset_dir
=
${
PATH_TO_DATASET
}
...
...
@@ -83,16 +68,6 @@ directory in which training checkpoints and events will be written to, and
${PATH_TO_DATASET} is the directory in which the PASCAL VOC 2012 dataset
resides.
<<<<<<< HEAD
<<<<<<< HEAD
Note that for {train,eval,vis}.py:
1.
We use small batch size during training. The users could change it based on
the available GPU memory and also set
`fine_tune_batch_norm`
to be False or
True depending on the use case.
=======
=======
>>>>>>> origin/master
**Note that for {train,eval,vis}.py:**
1.
In order to reproduce our results, one needs to use large batch size (> 12),
...
...
@@ -101,10 +76,6 @@ Note that for {train,eval,vis}.py:
GPU memory at hand, please fine-tune from our provided checkpoints whose
batch norm parameters have been trained, and use smaller learning rate with
fine_tune_batch_norm = False.
<<<<<<< HEAD
>>>>>>> origin/master
=======
>>>>>>> origin/master
2.
The users should change atrous_rates from [6, 12, 18] to [12, 24, 36] if
setting output_stride=8.
...
...
@@ -128,16 +99,8 @@ python deeplab/eval.py \
--decoder_output_stride
=
4
\
--eval_crop_size
=
513
\
--eval_crop_size
=
513
\
<<<<<<
< HEAD
<<<<<<
< HEAD
=======
--dataset
=
"pascal_voc_seg"
\
--eval_split
=
"val"
\
>>>>>>>
origin/master
=======
--dataset
=
"pascal_voc_seg"
\
--eval_split
=
"val"
\
>>>>>>>
origin/master
--checkpoint_dir
=
${
PATH_TO_CHECKPOINT
}
\
--eval_logdir
=
${
PATH_TO_EVAL_DIR
}
\
--dataset_dir
=
${
PATH_TO_DATASET
}
...
...
@@ -164,16 +127,8 @@ python deeplab/vis.py \
--decoder_output_stride
=
4
\
--vis_crop_size
=
513
\
--vis_crop_size
=
513
\
<<<<<<
< HEAD
<<<<<<
< HEAD
=======
--dataset
=
"pascal_voc_seg"
\
--vis_split
=
"val"
\
>>>>>>>
origin/master
=======
--dataset
=
"pascal_voc_seg"
\
--vis_split
=
"val"
\
>>>>>>>
origin/master
--checkpoint_dir
=
${
PATH_TO_CHECKPOINT
}
\
--vis_logdir
=
${
PATH_TO_VIS_DIR
}
\
--dataset_dir
=
${
PATH_TO_DATASET
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment