Unverified Commit 8d5d36e0 authored by Haoyu Zhang's avatar Haoyu Zhang Committed by GitHub
Browse files

Disable Tensorboard callback by default (#6424)

parent ea3542c1
...@@ -180,14 +180,14 @@ def run(flags_obj): ...@@ -180,14 +180,14 @@ def run(flags_obj):
num_eval_steps = None num_eval_steps = None
validation_data = None validation_data = None
callbacks = [time_callback, lr_callback]
if flags_obj.enable_tensorboard:
callbacks.append(tensorboard_callback)
history = model.fit(train_input_dataset, history = model.fit(train_input_dataset,
epochs=train_epochs, epochs=train_epochs,
steps_per_epoch=train_steps, steps_per_epoch=train_steps,
callbacks=[ callbacks=callbacks,
time_callback,
lr_callback,
tensorboard_callback
],
validation_steps=num_eval_steps, validation_steps=num_eval_steps,
validation_data=validation_data, validation_data=validation_data,
validation_freq=flags_obj.epochs_between_evals, validation_freq=flags_obj.epochs_between_evals,
......
...@@ -257,6 +257,9 @@ def define_keras_flags(): ...@@ -257,6 +257,9 @@ def define_keras_flags():
name='enable_xla', default=False, name='enable_xla', default=False,
help='Whether to enable XLA auto jit compilation. This is still an ' help='Whether to enable XLA auto jit compilation. This is still an '
'experimental feature, and is not yet effective with TF 2.0.') 'experimental feature, and is not yet effective with TF 2.0.')
flags.DEFINE_boolean(
name='enable_tensorboard', default=False,
help='Whether to enable Tensorboard callback.')
flags.DEFINE_integer( flags.DEFINE_integer(
name='train_steps', default=None, name='train_steps', default=None,
help='The number of steps to run for training. If it is larger than ' help='The number of steps to run for training. If it is larger than '
......
...@@ -193,14 +193,14 @@ def run(flags_obj): ...@@ -193,14 +193,14 @@ def run(flags_obj):
num_eval_steps = None num_eval_steps = None
validation_data = None validation_data = None
callbacks = [time_callback, lr_callback]
if flags_obj.enable_tensorboard:
callbacks.append(tensorboard_callback)
history = model.fit(train_input_dataset, history = model.fit(train_input_dataset,
epochs=train_epochs, epochs=train_epochs,
steps_per_epoch=train_steps, steps_per_epoch=train_steps,
callbacks=[ callbacks=callbacks,
time_callback,
lr_callback,
tensorboard_callback
],
validation_steps=num_eval_steps, validation_steps=num_eval_steps,
validation_data=validation_data, validation_data=validation_data,
validation_freq=flags_obj.epochs_between_evals, validation_freq=flags_obj.epochs_between_evals,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment