"git@developer.sourcefind.cn:modelzoo/resnet50_tensorflow.git" did not exist on "d44156002142407ae311bc027e574cf0abb5974c"
Unverified Commit 89e30510 authored by Mark Daoust's avatar Mark Daoust Committed by GitHub
Browse files

Merge pull request #4933 from DecentGradient/patch-1

Use NUM_WORDS in input_shape
parents 22e248ce c94d1d29
...@@ -294,7 +294,7 @@ ...@@ -294,7 +294,7 @@
"cell_type": "code", "cell_type": "code",
"source": [ "source": [
"baseline_model = keras.Sequential([\n", "baseline_model = keras.Sequential([\n",
" keras.layers.Dense(16, activation=tf.nn.relu, input_shape=(10000,)),\n", " keras.layers.Dense(16, activation=tf.nn.relu, input_shape=(NUM_WORDS,)),\n",
" keras.layers.Dense(16, activation=tf.nn.relu),\n", " keras.layers.Dense(16, activation=tf.nn.relu),\n",
" keras.layers.Dense(1, activation=tf.nn.sigmoid)\n", " keras.layers.Dense(1, activation=tf.nn.sigmoid)\n",
"])\n", "])\n",
...@@ -365,7 +365,7 @@ ...@@ -365,7 +365,7 @@
"cell_type": "code", "cell_type": "code",
"source": [ "source": [
"smaller_model = keras.Sequential([\n", "smaller_model = keras.Sequential([\n",
" keras.layers.Dense(4, activation=tf.nn.relu, input_shape=(10000,)),\n", " keras.layers.Dense(4, activation=tf.nn.relu, input_shape=(NUM_WORDS,)),\n",
" keras.layers.Dense(4, activation=tf.nn.relu),\n", " keras.layers.Dense(4, activation=tf.nn.relu),\n",
" keras.layers.Dense(1, activation=tf.nn.sigmoid)\n", " keras.layers.Dense(1, activation=tf.nn.sigmoid)\n",
"])\n", "])\n",
...@@ -438,7 +438,7 @@ ...@@ -438,7 +438,7 @@
"cell_type": "code", "cell_type": "code",
"source": [ "source": [
"bigger_model = keras.models.Sequential([\n", "bigger_model = keras.models.Sequential([\n",
" keras.layers.Dense(512, activation=tf.nn.relu, input_shape=(10000,)),\n", " keras.layers.Dense(512, activation=tf.nn.relu, input_shape=(NUM_WORDS,)),\n",
" keras.layers.Dense(512, activation=tf.nn.relu),\n", " keras.layers.Dense(512, activation=tf.nn.relu),\n",
" keras.layers.Dense(1, activation=tf.nn.sigmoid)\n", " keras.layers.Dense(1, activation=tf.nn.sigmoid)\n",
"])\n", "])\n",
...@@ -606,7 +606,7 @@ ...@@ -606,7 +606,7 @@
"source": [ "source": [
"l2_model = keras.models.Sequential([\n", "l2_model = keras.models.Sequential([\n",
" keras.layers.Dense(16, kernel_regularizer=keras.regularizers.l2(0.001),\n", " keras.layers.Dense(16, kernel_regularizer=keras.regularizers.l2(0.001),\n",
" activation=tf.nn.relu, input_shape=(10000,)),\n", " activation=tf.nn.relu, input_shape=(NUM_WORDS,)),\n",
" keras.layers.Dense(16, kernel_regularizer=keras.regularizers.l2(0.001),\n", " keras.layers.Dense(16, kernel_regularizer=keras.regularizers.l2(0.001),\n",
" activation=tf.nn.relu),\n", " activation=tf.nn.relu),\n",
" keras.layers.Dense(1, activation=tf.nn.sigmoid)\n", " keras.layers.Dense(1, activation=tf.nn.sigmoid)\n",
...@@ -697,7 +697,7 @@ ...@@ -697,7 +697,7 @@
"cell_type": "code", "cell_type": "code",
"source": [ "source": [
"dpt_model = keras.models.Sequential([\n", "dpt_model = keras.models.Sequential([\n",
" keras.layers.Dense(16, activation=tf.nn.relu, input_shape=(10000,)),\n", " keras.layers.Dense(16, activation=tf.nn.relu, input_shape=(NUM_WORDS,)),\n",
" keras.layers.Dropout(0.5),\n", " keras.layers.Dropout(0.5),\n",
" keras.layers.Dense(16, activation=tf.nn.relu),\n", " keras.layers.Dense(16, activation=tf.nn.relu),\n",
" keras.layers.Dropout(0.5),\n", " keras.layers.Dropout(0.5),\n",
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment