Commit 87252d5a authored by Derek Chow's avatar Derek Chow
Browse files

Clean up slim/datasets.

parent 5afeec21
# Description:
# Contains files for loading, training and evaluating TF-Slim-based models.
package(default_visibility = [
"//visibility:public",
])
package(default_visibility = [":public"])
licenses(["notice"]) # Apache 2.0
......@@ -14,24 +12,36 @@ package_group(name = "internal")
py_library(
name = "dataset_utils",
srcs = ["datasets/dataset_utils.py"],
deps = [
"//tensorflow",
],
)
py_library(
name = "download_and_convert_cifar10",
srcs = ["datasets/download_and_convert_cifar10.py"],
deps = [":dataset_utils"],
deps = [
":dataset_utils",
"//tensorflow",
],
)
py_library(
name = "download_and_convert_flowers",
srcs = ["datasets/download_and_convert_flowers.py"],
deps = [":dataset_utils"],
deps = [
":dataset_utils",
"//tensorflow",
],
)
py_library(
name = "download_and_convert_mnist",
srcs = ["datasets/download_and_convert_mnist.py"],
deps = [":dataset_utils"],
deps = [
":dataset_utils",
"//tensorflow",
],
)
py_binary(
......@@ -47,25 +57,37 @@ py_binary(
py_binary(
name = "cifar10",
srcs = ["datasets/cifar10.py"],
deps = [":dataset_utils"],
deps = [
":dataset_utils",
"//tensorflow",
],
)
py_binary(
name = "flowers",
srcs = ["datasets/flowers.py"],
deps = [":dataset_utils"],
deps = [
":dataset_utils",
"//tensorflow",
],
)
py_binary(
name = "imagenet",
srcs = ["datasets/imagenet.py"],
deps = [":dataset_utils"],
deps = [
":dataset_utils",
"//tensorflow",
],
)
py_binary(
name = "mnist",
srcs = ["datasets/mnist.py"],
deps = [":dataset_utils"],
deps = [
":dataset_utils",
"//tensorflow",
],
)
py_library(
......@@ -82,33 +104,51 @@ py_library(
py_library(
name = "model_deploy",
srcs = ["deployment/model_deploy.py"],
deps = [
"//tensorflow",
],
)
py_test(
name = "model_deploy_test",
srcs = ["deployment/model_deploy_test.py"],
srcs_version = "PY2AND3",
deps = [":model_deploy"],
deps = [
":model_deploy",
"//tensorflow",
],
)
py_library(
name = "cifarnet_preprocessing",
srcs = ["preprocessing/cifarnet_preprocessing.py"],
deps = [
"//tensorflow",
],
)
py_library(
name = "inception_preprocessing",
srcs = ["preprocessing/inception_preprocessing.py"],
deps = [
"//tensorflow",
],
)
py_library(
name = "lenet_preprocessing",
srcs = ["preprocessing/lenet_preprocessing.py"],
deps = [
"//tensorflow",
],
)
py_library(
name = "vgg_preprocessing",
srcs = ["preprocessing/vgg_preprocessing.py"],
deps = [
"//tensorflow",
],
)
py_library(
......@@ -119,6 +159,7 @@ py_library(
":inception_preprocessing",
":lenet_preprocessing",
":vgg_preprocessing",
"//tensorflow",
],
)
......@@ -150,12 +191,18 @@ py_test(
size = "medium",
srcs = ["nets/alexnet_test.py"],
srcs_version = "PY2AND3",
deps = [":alexnet"],
deps = [
":alexnet",
"//tensorflow",
],
)
py_library(
name = "cifarnet",
srcs = ["nets/cifarnet.py"],
deps = [
"//tensorflow",
],
)
py_library(
......@@ -225,7 +272,10 @@ py_test(
srcs = ["nets/inception_v1_test.py"],
shard_count = 3,
srcs_version = "PY2AND3",
deps = [":inception"],
deps = [
":inception",
"//tensorflow",
],
)
py_test(
......@@ -234,7 +284,10 @@ py_test(
srcs = ["nets/inception_v2_test.py"],
shard_count = 3,
srcs_version = "PY2AND3",
deps = [":inception"],
deps = [
":inception",
"//tensorflow",
],
)
py_test(
......@@ -243,7 +296,10 @@ py_test(
srcs = ["nets/inception_v3_test.py"],
shard_count = 3,
srcs_version = "PY2AND3",
deps = [":inception"],
deps = [
":inception",
"//tensorflow",
],
)
py_test(
......@@ -252,7 +308,10 @@ py_test(
srcs = ["nets/inception_v4_test.py"],
shard_count = 3,
srcs_version = "PY2AND3",
deps = [":inception"],
deps = [
":inception",
"//tensorflow",
],
)
py_test(
......@@ -261,12 +320,18 @@ py_test(
srcs = ["nets/inception_resnet_v2_test.py"],
shard_count = 3,
srcs_version = "PY2AND3",
deps = [":inception"],
deps = [
":inception",
"//tensorflow",
],
)
py_library(
name = "lenet",
srcs = ["nets/lenet.py"],
deps = [
"//tensorflow",
],
)
py_library(
......@@ -283,6 +348,7 @@ py_test(
srcs_version = "PY2AND3",
deps = [
":mobilenet_v1",
"//tensorflow",
],
)
......@@ -297,7 +363,10 @@ py_test(
size = "medium",
srcs = ["nets/overfeat_test.py"],
srcs_version = "PY2AND3",
deps = [":overfeat"],
deps = [
":overfeat",
"//tensorflow",
],
)
py_library(
......@@ -319,8 +388,12 @@ py_test(
name = "resnet_v1_test",
size = "medium",
srcs = ["nets/resnet_v1_test.py"],
shard_count = 2,
srcs_version = "PY2AND3",
deps = [":resnet_v1"],
deps = [
":resnet_v1",
"//tensorflow",
],
)
py_library(
......@@ -336,8 +409,12 @@ py_test(
name = "resnet_v2_test",
size = "medium",
srcs = ["nets/resnet_v2_test.py"],
shard_count = 2,
srcs_version = "PY2AND3",
deps = [":resnet_v2"],
deps = [
":resnet_v2",
"//tensorflow",
],
)
py_library(
......@@ -351,21 +428,31 @@ py_test(
size = "medium",
srcs = ["nets/vgg_test.py"],
srcs_version = "PY2AND3",
deps = [":vgg"],
deps = [
":vgg",
"//tensorflow",
],
)
py_library(
name = "nets_factory",
srcs = ["nets/nets_factory.py"],
deps = [":nets"],
deps = [
":nets",
"//tensorflow",
],
)
py_test(
name = "nets_factory_test",
size = "medium",
srcs = ["nets/nets_factory_test.py"],
shard_count = 2,
srcs_version = "PY2AND3",
deps = [":nets_factory"],
deps = [
":nets_factory",
"//tensorflow",
],
)
py_binary(
......@@ -376,6 +463,7 @@ py_binary(
":model_deploy",
":nets_factory",
":preprocessing_factory",
"//tensorflow",
],
)
......@@ -387,6 +475,7 @@ py_binary(
":model_deploy",
":nets_factory",
":preprocessing_factory",
"//tensorflow",
],
)
......@@ -396,6 +485,7 @@ py_binary(
deps = [
":dataset_factory",
":nets_factory",
"//tensorflow",
],
)
......@@ -410,5 +500,6 @@ py_test(
deps = [
":export_inference_graph",
":nets_factory",
"//tensorflow",
],
)
......@@ -34,7 +34,7 @@ def int64_feature(values):
values: A scalar or list of values.
Returns:
a TF-Feature.
A TF-Feature.
"""
if not isinstance(values, (tuple, list)):
values = [values]
......@@ -48,11 +48,25 @@ def bytes_feature(values):
values: A string.
Returns:
a TF-Feature.
A TF-Feature.
"""
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[values]))
def float_feature(values):
"""Returns a TF-Feature of floats.
Args:
values: A scalar of list of values.
Returns:
A TF-Feature.
"""
if not isinstance(values, (tuple, list)):
values = [values]
return tf.train.Feature(float_list=tf.train.FloatList(value=values))
def image_to_tfexample(image_data, image_format, height, width, class_id):
return tf.train.Example(features=tf.train.Features(feature={
'image/encoded': bytes_feature(image_data),
......
......@@ -26,12 +26,12 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import cPickle
import os
import sys
import tarfile
import numpy as np
from six.moves import cPickle
from six.moves import urllib
import tensorflow as tf
......
......@@ -209,4 +209,3 @@ def run(dataset_dir):
_clean_up_temporary_files(dataset_dir)
print('\nFinished converting the Flowers dataset!')
......@@ -71,4 +71,3 @@ def main(_):
if __name__ == '__main__':
tf.app.run()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment