Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
84d3c62c
Commit
84d3c62c
authored
Dec 14, 2018
by
Shining Sun
Browse files
first attempt to merge the two main files
parent
65da497f
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
426 additions
and
0 deletions
+426
-0
official/resnet/keras/keras_main.py
official/resnet/keras/keras_main.py
+426
-0
No files found.
official/resnet/keras/keras_main.py
0 → 100644
View file @
84d3c62c
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Runs a ResNet model on the ImageNet dataset."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
time
from
absl
import
app
as
absl_app
from
absl
import
flags
import
numpy
as
np
import
tensorflow
as
tf
# pylint: disable=g-bad-import-order
from
official.resnet
import
cifar10_main
as
cifar_main
from
official.resnet
import
resnet_run_loop
from
official.resnet.keras
import
keras_resnet_model
from
official.utils.flags
import
core
as
flags_core
from
official.utils.logs
import
logger
from
official.utils.misc
import
distribution_utils
from
tensorflow.python.keras.optimizer_v2
import
gradient_descent
as
gradient_descent_v2
IMAGENET_DATASET
=
"imagenet"
CIFAR_DATASET
=
"cifar"
class
TimeHistory
(
tf
.
keras
.
callbacks
.
Callback
):
"""Callback for Keras models."""
def
__init__
(
self
,
batch_size
):
"""Callback for Keras models.
Args:
batch_size: Total batch size.
"""
self
.
_batch_size
=
batch_size
self
.
last_exp_per_sec
=
0
super
(
TimeHistory
,
self
).
__init__
()
def
on_train_begin
(
self
,
logs
=
None
):
self
.
epoch_times_secs
=
[]
self
.
batch_times_secs
=
[]
self
.
record_batch
=
True
def
on_epoch_begin
(
self
,
epoch
,
logs
=
None
):
self
.
epoch_time_start
=
time
.
time
()
def
on_epoch_end
(
self
,
epoch
,
logs
=
None
):
self
.
epoch_times_secs
.
append
(
time
.
time
()
-
self
.
epoch_time_start
)
def
on_batch_begin
(
self
,
batch
,
logs
=
None
):
if
self
.
record_batch
:
self
.
batch_time_start
=
time
.
time
()
self
.
record_batch
=
False
def
on_batch_end
(
self
,
batch
,
logs
=
None
):
n
=
100
if
batch
%
n
==
0
:
last_n_batches
=
time
.
time
()
-
self
.
batch_time_start
examples_per_second
=
(
self
.
_batch_size
*
n
)
/
last_n_batches
self
.
batch_times_secs
.
append
(
last_n_batches
)
self
.
last_exp_per_sec
=
examples_per_second
self
.
record_batch
=
True
# TODO(anjalisridhar): add timestamp as well.
if
batch
!=
0
:
tf
.
logging
.
info
(
"BenchmarkMetric: {'num_batches':%d, 'time_taken': %f,"
"'images_per_second': %f}"
%
(
batch
,
last_n_batches
,
examples_per_second
))
# LR_SCHEDULE = [ # (multiplier, epoch to start) tuples
# (1.0, 5), (0.1, 30), (0.01, 60), (0.001, 80)
# ]
LR_SCHEDULE
=
[
# (multiplier, epoch to start) tuples
(
0.1
,
91
),
(
0.01
,
136
),
(
0.001
,
182
)
]
BASE_LEARNING_RATE
=
0.1
def
learning_rate_schedule
(
current_epoch
,
current_batch
,
batches_per_epoch
,
batch_size
):
"""Handles linear scaling rule, gradual warmup, and LR decay.
The learning rate starts at 0, then it increases linearly per step.
After 5 epochs we reach the base learning rate (scaled to account
for batch size).
After 30, 60 and 80 epochs the learning rate is divided by 10.
After 90 epochs training stops and the LR is set to 0. This ensures
that we train for exactly 90 epochs for reproducibility.
Args:
current_epoch: integer, current epoch indexed from 0.
current_batch: integer, current batch in the current epoch, indexed from 0.
Returns:
Adjusted learning rate.
"""
# epoch = current_epoch + float(current_batch) / batches_per_epoch
# warmup_lr_multiplier, warmup_end_epoch = LR_SCHEDULE[0]
# if epoch < warmup_end_epoch:
# # Learning rate increases linearly per step.
# return BASE_LEARNING_RATE * warmup_lr_multiplier * epoch / warmup_end_epoch
# for mult, start_epoch in LR_SCHEDULE:
# if epoch >= start_epoch:
# learning_rate = BASE_LEARNING_RATE * mult
# else:
# break
# return learning_rate
initial_learning_rate
=
BASE_LEARNING_RATE
*
batch_size
/
128
learning_rate
=
initial_learning_rate
for
mult
,
start_epoch
in
LR_SCHEDULE
:
if
current_epoch
>=
start_epoch
:
learning_rate
=
initial_learning_rate
*
mult
else
:
break
return
learning_rate
class
LearningRateBatchScheduler
(
tf
.
keras
.
callbacks
.
Callback
):
"""Callback to update learning rate on every batch (not epoch boundaries).
N.B. Only support Keras optimizers, not TF optimizers.
Args:
schedule: a function that takes an epoch index and a batch index as input
(both integer, indexed from 0) and returns a new learning rate as
output (float).
"""
def
__init__
(
self
,
schedule
,
batch_size
,
num_images
):
super
(
LearningRateBatchScheduler
,
self
).
__init__
()
self
.
schedule
=
schedule
self
.
batches_per_epoch
=
num_images
/
batch_size
self
.
batch_size
=
batch_size
self
.
epochs
=
-
1
self
.
prev_lr
=
-
1
def
on_epoch_begin
(
self
,
epoch
,
logs
=
None
):
#if not hasattr(self.model.optimizer, 'learning_rate'):
# raise ValueError('Optimizer must have a "learning_rate" attribute.')
self
.
epochs
+=
1
def
on_batch_begin
(
self
,
batch
,
logs
=
None
):
lr
=
self
.
schedule
(
self
.
epochs
,
batch
,
self
.
batches_per_epoch
,
self
.
batch_size
)
if
not
isinstance
(
lr
,
(
float
,
np
.
float32
,
np
.
float64
)):
raise
ValueError
(
'The output of the "schedule" function should be float.'
)
if
lr
!=
self
.
prev_lr
:
tf
.
keras
.
backend
.
set_value
(
self
.
model
.
optimizer
.
learning_rate
,
lr
)
self
.
prev_lr
=
lr
tf
.
logging
.
debug
(
'Epoch %05d Batch %05d: LearningRateBatchScheduler change '
'learning rate to %s.'
,
self
.
epochs
,
batch
,
lr
)
def
parse_record_keras
(
raw_record
,
is_training
,
dtype
):
"""Parses a record containing a training example of an image.
The input record is parsed into a label and image, and the image is passed
through preprocessing steps (cropping, flipping, and so on).
Args:
raw_record: scalar Tensor tf.string containing a serialized
Example protocol buffer.
is_training: A boolean denoting whether the input is for training.
dtype: Data type to use for input images.
Returns:
Tuple with processed image tensor and one-hot-encoded label tensor.
"""
if
shining
.
dataset
==
IMAGENET_DATASET
:
image_buffer
,
label
,
bbox
=
imagenet_main
.
_parse_example_proto
(
raw_record
)
image
=
imagenet_preprocessing
.
preprocess_image
(
image_buffer
=
image_buffer
,
bbox
=
bbox
,
output_height
=
imagenet_main
.
_DEFAULT_IMAGE_SIZE
,
output_width
=
imagenet_main
.
_DEFAULT_IMAGE_SIZE
,
num_channels
=
imagenet_main
.
_NUM_CHANNELS
,
is_training
=
is_training
)
image
=
tf
.
cast
(
image
,
dtype
)
label
=
tf
.
sparse_to_dense
(
label
,
(
imagenet_main
.
_NUM_CLASSES
,),
1
)
elif
shining
.
dataset
==
CIFAR_DATASET
:
image
,
label
=
cifar_main
.
parse_record
(
raw_record
,
is_training
,
dtype
)
label
=
tf
.
sparse_to_dense
(
label
,
(
cifar_main
.
_NUM_CLASSES
,),
1
)
else
:
raise
ValueError
(
"Unknown dataset: {%s}"
.
format
(
shining
.
dataset
))
return
image
,
label
def
run_imagenet_with_keras
(
flags_obj
):
"""Run ResNet ImageNet training and eval loop using native Keras APIs.
Args:
flags_obj: An object containing parsed flag values.
Raises:
ValueError: If fp16 is passed as it is not currently supported.
"""
if
flags_obj
.
enable_eager
:
tf
.
enable_eager_execution
()
dtype
=
flags_core
.
get_tf_dtype
(
flags_obj
)
if
dtype
==
'fp16'
:
raise
ValueError
(
'dtype fp16 is not supported in Keras. Use the default '
'value(fp32).'
)
per_device_batch_size
=
distribution_utils
.
per_device_batch_size
(
flags_obj
.
batch_size
,
flags_core
.
get_num_gpus
(
flags_obj
))
train_input_dataset
,
eval_input_dataset
=
get_data
(
shining
.
dataset
,
flags_obj
.
use_synthetic_data
)
# Use Keras ResNet50 applications model and native keras APIs
# initialize RMSprop optimizer
# TODO(anjalisridhar): Move to using MomentumOptimizer.
# opt = tf.train.GradientDescentOptimizer(learning_rate=0.0001)
# I am setting an initial LR of 0.001 since this will be reset
# at the beginning of the training loop.
opt
=
gradient_descent_v2
.
SGD
(
learning_rate
=
0.1
,
momentum
=
0.9
)
# TF Optimizer:
# learning_rate = BASE_LEARNING_RATE * flags_obj.batch_size / 256
# opt = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.9)
strategy
=
distribution_utils
.
get_distribution_strategy
(
num_gpus
=
flags_obj
.
num_gpus
)
if
shining
.
dataset
==
IMAGENET_DATASET
:
model
=
resnet_model_tpu
.
ResNet50
(
num_classes
=
imagenet_main
.
_NUM_CLASSES
)
steps_per_epoch
=
imagenet_main
.
_NUM_IMAGES
[
'train'
]
//
flags_obj
.
batch_size
lr_callback
=
LearningRateBatchScheduler
(
learning_rate_schedule
,
batch_size
=
flags_obj
.
batch_size
,
num_images
=
imagenet_main
.
_NUM_IMAGES
[
'train'
])
num_eval_steps
=
(
imagenet_main
.
_NUM_IMAGES
[
'validation'
]
//
flags_obj
.
batch_size
)
elif
shining
.
dataset
=
CIFAR_DATASET
:
model
=
keras_resnet_model
.
ResNet56
(
input_shape
=
(
32
,
32
,
3
),
include_top
=
True
,
classes
=
cifar_main
.
_NUM_CLASSES
,
weights
=
None
)
steps_per_epoch
=
cifar_main
.
_NUM_IMAGES
[
'train'
]
//
flags_obj
.
batch_size
lr_callback
=
LearningRateBatchScheduler
(
learning_rate_schedule
,
batch_size
=
flags_obj
.
batch_size
,
num_images
=
cifar_main
.
_NUM_IMAGES
[
'train'
])
num_eval_steps
=
(
cifar_main
.
_NUM_IMAGES
[
'validation'
]
//
flags_obj
.
batch_size
)
else
:
raise
ValueError
(
"Unknown dataset: {%s}"
.
format
(
shining
.
dataset
))
loss
=
'categorical_crossentropy'
accuracy
=
'categorical_accuracy'
if
flags_obj
.
num_gpus
==
1
and
flags_obj
.
dist_strat_off
:
print
(
'Not using distribution strategies.'
)
model
.
compile
(
loss
=
loss
,
optimizer
=
opt
,
metrics
=
[
accuracy
])
else
:
model
.
compile
(
loss
=
loss
,
optimizer
=
opt
,
metrics
=
[
accuracy
],
distribute
=
strategy
)
time_callback
=
TimeHistory
(
flags_obj
.
batch_size
)
tesorboard_callback
=
tf
.
keras
.
callbacks
.
TensorBoard
(
log_dir
=
flags_obj
.
model_dir
)
# update_freq="batch") # Add this if want per batch logging.
print
(
'Executing eagerly?:'
,
tf
.
executing_eagerly
())
history
=
model
.
fit
(
train_input_dataset
,
epochs
=
flags_obj
.
train_epochs
,
steps_per_epoch
=
steps_per_epoch
,
callbacks
=
[
time_callback
,
lr_callback
,
tesorboard_callback
],
validation_steps
=
num_eval_steps
,
validation_data
=
eval_input_dataset
,
verbose
=
1
)
eval_output
=
model
.
evaluate
(
eval_input_dataset
,
steps
=
num_eval_steps
,
verbose
=
1
)
print
(
'Test loss:'
,
eval_output
[
0
])
stats
=
{}
stats
[
'accuracy_top_1'
]
=
eval_output
[
1
]
stats
[
'eval_loss'
]
=
eval_output
[
0
]
stats
[
'training_loss'
]
=
history
.
history
[
'loss'
][
-
1
]
stats
[
'training_accuracy_top_1'
]
=
history
.
history
[
'categorical_accuracy'
][
-
1
]
print
(
'top_1 accuracy:{}'
.
format
(
stats
[
'accuracy_top_1'
]))
print
(
'top_1_training_accuracy:{}'
.
format
(
stats
[
'training_accuracy_top_1'
]))
return
stats
def
get_data
(
dataset
,
use_synthetic_data
):
if
dataset
==
IMAGENET_DATASET
:
if
use_synthetic_data
:
synth_input_fn
=
resnet_run_loop
.
get_synth_input_fn
(
imagenet_main
.
_DEFAULT_IMAGE_SIZE
,
imagenet_main
.
_DEFAULT_IMAGE_SIZE
,
imagenet_main
.
_NUM_CHANNELS
,
imagenet_main
.
_NUM_CLASSES
,
dtype
=
flags_core
.
get_tf_dtype
(
flags_obj
))
train_input_dataset
=
synth_input_fn
(
batch_size
=
per_device_batch_size
,
height
=
imagenet_main
.
_DEFAULT_IMAGE_SIZE
,
width
=
imagenet_main
.
_DEFAULT_IMAGE_SIZE
,
num_channels
=
imagenet_main
.
_NUM_CHANNELS
,
num_classes
=
imagenet_main
.
_NUM_CLASSES
,
dtype
=
dtype
)
eval_input_dataset
=
synth_input_fn
(
batch_size
=
per_device_batch_size
,
height
=
imagenet_main
.
_DEFAULT_IMAGE_SIZE
,
width
=
imagenet_main
.
_DEFAULT_IMAGE_SIZE
,
num_channels
=
imagenet_main
.
_NUM_CHANNELS
,
num_classes
=
imagenet_main
.
_NUM_CLASSES
,
dtype
=
dtype
)
# pylint: enable=protected-access
else
:
train_input_dataset
=
imagenet_main
.
input_fn
(
True
,
flags_obj
.
data_dir
,
batch_size
=
per_device_batch_size
,
num_epochs
=
flags_obj
.
train_epochs
,
parse_record_fn
=
parse_record_keras
)
eval_input_dataset
=
imagenet_main
.
input_fn
(
False
,
flags_obj
.
data_dir
,
batch_size
=
per_device_batch_size
,
num_epochs
=
flags_obj
.
train_epochs
,
parse_record_fn
=
parse_record_keras
)
elif
dataset
==
CIFAR_DATASET
:
if
use_synthetic_data
:
if
flags_obj
.
use_synthetic_data
:
synth_input_fn
=
resnet_run_loop
.
get_synth_input_fn
(
cifar_main
.
_HEIGHT
,
cifar_main
.
_WIDTH
,
cifar_main
.
_NUM_CHANNELS
,
cifar_main
.
_NUM_CLASSES
,
dtype
=
flags_core
.
get_tf_dtype
(
flags_obj
))
train_input_dataset
=
synth_input_fn
(
True
,
flags_obj
.
data_dir
,
batch_size
=
per_device_batch_size
,
height
=
cifar_main
.
_HEIGHT
,
width
=
cifar_main
.
_WIDTH
,
num_channels
=
cifar_main
.
_NUM_CHANNELS
,
num_classes
=
cifar_main
.
_NUM_CLASSES
,
dtype
=
dtype
)
eval_input_dataset
=
synth_input_fn
(
False
,
flags_obj
.
data_dir
,
batch_size
=
per_device_batch_size
,
height
=
cifar_main
.
_HEIGHT
,
width
=
cifar_main
.
_WIDTH
,
num_channels
=
cifar_main
.
_NUM_CHANNELS
,
num_classes
=
cifar_main
.
_NUM_CLASSES
,
dtype
=
dtype
)
# pylint: enable=protected-access
else
:
train_input_dataset
=
cifar_main
.
input_fn
(
True
,
flags_obj
.
data_dir
,
batch_size
=
per_device_batch_size
,
num_epochs
=
flags_obj
.
train_epochs
,
parse_record_fn
=
parse_record_keras
)
eval_input_dataset
=
cifar_main
.
input_fn
(
False
,
flags_obj
.
data_dir
,
batch_size
=
per_device_batch_size
,
num_epochs
=
flags_obj
.
train_epochs
,
parse_record_fn
=
parse_record_keras
)
return
train_input_dataset
,
eval_input_dataset
def
define_keras_flags
():
flags
.
DEFINE_boolean
(
name
=
'enable_eager'
,
default
=
False
,
help
=
'Enable eager?'
)
flags
.
DEFINE_string
(
name
=
'dataset'
,
default
=
IMAGENET_DATASET
,
help
=
'Which dataset, ImageNet or Cifar?'
)
def
main
(
_
):
with
logger
.
benchmark_context
(
flags
.
FLAGS
):
run_imagenet_with_keras
(
flags
.
FLAGS
)
if
__name__
==
'__main__'
:
tf
.
logging
.
set_verbosity
(
tf
.
logging
.
INFO
)
define_keras_flags
()
if
shining
.
dataset
==
IMAGENET_DATASET
:
imagenet_main
.
define_imagenet_flags
()
elif
shining
.
dataset
==
CIFAR_DATASET
:
cifar_main
.
define_cifar_flags
()
absl_app
.
run
(
main
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment