Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
83b87f05
"src/include/Array.hpp" did not exist on "498e71b09822406b1b050c5eb03edebfe04038a6"
Unverified
Commit
83b87f05
authored
Mar 16, 2022
by
srihari-humbarwadi
Browse files
added configs for dataloader, losses and task
parent
5e478a4c
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
73 additions
and
3 deletions
+73
-3
official/vision/beta/projects/panoptic_maskrcnn/configs/panoptic_deeplab.py
...ta/projects/panoptic_maskrcnn/configs/panoptic_deeplab.py
+73
-3
No files found.
official/vision/beta/projects/panoptic_maskrcnn/configs/panoptic_deeplab.py
View file @
83b87f05
...
...
@@ -15,18 +15,46 @@
"""Panoptic Deeplab configuration definition."""
import
dataclasses
from
typing
import
List
,
Tuple
,
Union
from
typing
import
List
,
Optional
,
Tuple
,
Union
from
official.core
import
config_definitions
as
cfg
from
official.modeling
import
hyperparams
from
official.vision.beta.configs
import
common
from
official.vision.beta.configs
import
backbones
from
official.vision.beta.configs
import
decoders
_COCO_INPUT_PATH_BASE
=
'coco/tfrecords'
_COCO_TRAIN_EXAMPLES
=
118287
_COCO_VAL_EXAMPLES
=
5000
@
dataclasses
.
dataclass
class
Parser
(
hyperparams
.
Config
):
ignore_label
:
int
=
0
# If resize_eval_groundtruth is set to False, original image sizes are used
# for eval. In that case, groundtruth_padded_size has to be specified too to
# allow for batching the variable input sizes of images.
resize_eval_groundtruth
:
bool
=
True
groundtruth_padded_size
:
List
[
int
]
=
dataclasses
.
field
(
default_factory
=
list
)
aug_scale_min
:
float
=
1.0
aug_scale_max
:
float
=
1.0
aug_rand_hflip
:
bool
=
True
sigma
:
float
=
8.0
dtype
=
'float32'
@
dataclasses
.
dataclass
class
DataDecoder
(
common
.
DataDecoder
):
"""Data decoder config."""
simple_decoder
:
common
.
TfExampleDecoder
=
common
.
TfExampleDecoder
()
@
dataclasses
.
dataclass
class
DataConfig
(
cfg
.
DataConfig
):
"""Input config for training."""
decoder
:
DataDecoder
=
DataDecoder
()
parser
:
Parser
=
Parser
()
file_type
:
str
=
'tfrecord'
@
dataclasses
.
dataclass
class
PanopticDeeplabHead
(
hyperparams
.
Config
):
"""Panoptic Deeplab head config."""
...
...
@@ -39,7 +67,6 @@ class PanopticDeeplabHead(hyperparams.Config):
low_level
:
Union
[
List
[
int
],
Tuple
[
int
]]
=
(
3
,
2
)
low_level_num_filters
:
Union
[
List
[
int
],
Tuple
[
int
]]
=
(
64
,
32
)
@
dataclasses
.
dataclass
class
SemanticHead
(
PanopticDeeplabHead
):
"""Semantic head config."""
...
...
@@ -53,6 +80,8 @@ class InstanceHead(PanopticDeeplabHead):
@
dataclasses
.
dataclass
class
PanopticDeeplabPostProcessor
(
hyperparams
.
Config
):
"""Panoptic Deeplab PostProcessing config."""
output_size
:
List
[
int
]
=
dataclasses
.
field
(
default_factory
=
list
)
center_score_threshold
:
float
=
0.1
thing_class_ids
:
List
[
int
]
=
dataclasses
.
field
(
default_factory
=
list
)
label_divisor
:
int
=
256
*
256
*
256
...
...
@@ -60,11 +89,12 @@ class PanopticDeeplabPostProcessor(hyperparams.Config):
ignore_label
:
int
=
0
nms_kernel
:
int
=
41
keep_k_centers
:
int
=
400
rescale_predictions
:
bool
=
True
@
dataclasses
.
dataclass
class
PanopticDeeplab
(
hyperparams
.
Config
):
"""Panoptic Deeplab model config."""
num_classes
:
int
=
0
num_classes
:
int
=
2
input_size
:
List
[
int
]
=
dataclasses
.
field
(
default_factory
=
list
)
min_level
:
int
=
3
max_level
:
int
=
6
...
...
@@ -75,4 +105,44 @@ class PanopticDeeplab(hyperparams.Config):
semantic_head
:
SemanticHead
=
SemanticHead
()
instance_head
:
InstanceHead
=
InstanceHead
()
shared_decoder
:
bool
=
False
generate_panoptic_masks
:
bool
=
True
post_processor
:
PanopticDeeplabPostProcessor
=
PanopticDeeplabPostProcessor
()
@
dataclasses
.
dataclass
class
Losses
(
hyperparams
.
Config
):
label_smoothing
:
float
=
0.0
ignore_label
:
int
=
0
class_weights
:
List
[
float
]
=
dataclasses
.
field
(
default_factory
=
list
)
l2_weight_decay
:
float
=
1e-4
use_groundtruth_dimension
:
bool
=
True
top_k_percent_pixels
:
float
=
0.15
segmentation_loss_weight
:
float
=
1.0
center_heatmap_loss_weight
:
float
=
200
center_offset_loss_weight
:
float
=
0.01
@
dataclasses
.
dataclass
class
Evaluation
(
hyperparams
.
Config
):
""" Evaluation config """
ignored_label
:
int
=
0
max_instances_per_category
:
int
=
256
offset
:
int
=
256
*
256
*
256
is_thing
:
List
[
float
]
=
dataclasses
.
field
(
default_factory
=
list
)
rescale_predictions
:
bool
=
True
report_per_class_pq
:
bool
=
False
report_per_class_iou
:
bool
=
False
report_train_mean_iou
:
bool
=
True
# Turning this off can speed up training.
@
dataclasses
.
dataclass
class
PanopticDeeplabTask
(
cfg
.
TaskConfig
):
model
:
PanopticDeeplab
=
PanopticDeeplab
()
train_data
:
DataConfig
=
DataConfig
(
is_training
=
True
)
validation_data
:
DataConfig
=
DataConfig
(
is_training
=
False
,
drop_remainder
=
False
)
losses
:
Losses
=
Losses
()
init_checkpoint
:
Optional
[
str
]
=
None
init_checkpoint_modules
:
Union
[
str
,
List
[
str
]]
=
'all'
# all, backbone, and/or decoder
annotation_file
:
Optional
[
str
]
=
None
evaluation
:
Evaluation
=
Evaluation
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment