"examples/git@developer.sourcefind.cn:hehl2/torchaudio.git" did not exist on "9499f642fb3a46e38e44568bd7c03da579133147"
Commit 804d6abc authored by Vishnu Banna's avatar Vishnu Banna
Browse files

nn_blocks update

parent f35907fd
...@@ -48,7 +48,7 @@ class ConvBN(tf.keras.layers.Layer): ...@@ -48,7 +48,7 @@ class ConvBN(tf.keras.layers.Layer):
strides=(1, 1), strides=(1, 1),
padding='same', padding='same',
dilation_rate=(1, 1), dilation_rate=(1, 1),
kernel_initializer='glorot_uniform', kernel_initializer='VarianceScaling',
bias_initializer='zeros', bias_initializer='zeros',
bias_regularizer=None, bias_regularizer=None,
kernel_regularizer=None, kernel_regularizer=None,
...@@ -97,7 +97,14 @@ class ConvBN(tf.keras.layers.Layer): ...@@ -97,7 +97,14 @@ class ConvBN(tf.keras.layers.Layer):
self._strides = strides self._strides = strides
self._padding = padding self._padding = padding
self._dilation_rate = dilation_rate self._dilation_rate = dilation_rate
self._kernel_initializer = kernel_initializer
if kernel_initializer == "VarianceScaling":
# to match pytorch initialization method
self._kernel_initializer = tf.keras.initializers.VarianceScaling(
scale=1 / 3, mode='fan_in', distribution='uniform')
else:
self._kernel_initializer = kernel_initializer
self._bias_initializer = bias_initializer self._bias_initializer = bias_initializer
self._kernel_regularizer = kernel_regularizer self._kernel_regularizer = kernel_regularizer
...@@ -194,7 +201,7 @@ class DarkResidual(tf.keras.layers.Layer): ...@@ -194,7 +201,7 @@ class DarkResidual(tf.keras.layers.Layer):
filters=1, filters=1,
filter_scale=2, filter_scale=2,
dilation_rate=1, dilation_rate=1,
kernel_initializer='glorot_uniform', kernel_initializer='VarianceScaling',
bias_initializer='zeros', bias_initializer='zeros',
kernel_regularizer=None, kernel_regularizer=None,
bias_regularizer=None, bias_regularizer=None,
...@@ -366,7 +373,7 @@ class CSPTiny(tf.keras.layers.Layer): ...@@ -366,7 +373,7 @@ class CSPTiny(tf.keras.layers.Layer):
def __init__(self, def __init__(self,
filters=1, filters=1,
kernel_initializer='glorot_uniform', kernel_initializer='VarianceScaling',
bias_initializer='zeros', bias_initializer='zeros',
bias_regularizer=None, bias_regularizer=None,
kernel_regularizer=None, kernel_regularizer=None,
...@@ -532,7 +539,7 @@ class CSPRoute(tf.keras.layers.Layer): ...@@ -532,7 +539,7 @@ class CSPRoute(tf.keras.layers.Layer):
filters, filters,
filter_scale=2, filter_scale=2,
activation='mish', activation='mish',
kernel_initializer='glorot_uniform', kernel_initializer='VarianceScaling',
bias_initializer='zeros', bias_initializer='zeros',
bias_regularizer=None, bias_regularizer=None,
kernel_regularizer=None, kernel_regularizer=None,
...@@ -661,7 +668,7 @@ class CSPConnect(tf.keras.layers.Layer): ...@@ -661,7 +668,7 @@ class CSPConnect(tf.keras.layers.Layer):
drop_first=False, drop_first=False,
activation='mish', activation='mish',
kernel_size=(1, 1), kernel_size=(1, 1),
kernel_initializer='glorot_uniform', kernel_initializer='VarianceScaling',
bias_initializer='zeros', bias_initializer='zeros',
bias_regularizer=None, bias_regularizer=None,
kernel_regularizer=None, kernel_regularizer=None,
...@@ -783,7 +790,7 @@ class CSPStack(tf.keras.layers.Layer): ...@@ -783,7 +790,7 @@ class CSPStack(tf.keras.layers.Layer):
model_to_wrap=None, model_to_wrap=None,
filter_scale=2, filter_scale=2,
activation='mish', activation='mish',
kernel_initializer='glorot_uniform', kernel_initializer='VarianceScaling',
bias_initializer='zeros', bias_initializer='zeros',
bias_regularizer=None, bias_regularizer=None,
kernel_regularizer=None, kernel_regularizer=None,
...@@ -796,7 +803,6 @@ class CSPStack(tf.keras.layers.Layer): ...@@ -796,7 +803,6 @@ class CSPStack(tf.keras.layers.Layer):
"""CSPStack layer initializer. """CSPStack layer initializer.
Args: Args:
filters: integer for output depth, or the number of features to learn.
model_to_wrap: callable Model or a list of callable objects that will model_to_wrap: callable Model or a list of callable objects that will
process the output of CSPRoute, and be input into CSPConnect. process the output of CSPRoute, and be input into CSPConnect.
list will be called sequentially. list will be called sequentially.
...@@ -884,7 +890,7 @@ class PathAggregationBlock(tf.keras.layers.Layer): ...@@ -884,7 +890,7 @@ class PathAggregationBlock(tf.keras.layers.Layer):
def __init__(self, def __init__(self,
filters=1, filters=1,
drop_final=True, drop_final=True,
kernel_initializer='glorot_uniform', kernel_initializer='VarianceScaling',
bias_initializer='zeros', bias_initializer='zeros',
bias_regularizer=None, bias_regularizer=None,
kernel_regularizer=None, kernel_regularizer=None,
...@@ -1120,7 +1126,7 @@ class SAM(tf.keras.layers.Layer): ...@@ -1120,7 +1126,7 @@ class SAM(tf.keras.layers.Layer):
strides=(1, 1), strides=(1, 1),
padding='same', padding='same',
dilation_rate=(1, 1), dilation_rate=(1, 1),
kernel_initializer='glorot_uniform', kernel_initializer='VarianceScaling',
bias_initializer='zeros', bias_initializer='zeros',
bias_regularizer=None, bias_regularizer=None,
kernel_regularizer=None, kernel_regularizer=None,
...@@ -1192,7 +1198,7 @@ class CAM(tf.keras.layers.Layer): ...@@ -1192,7 +1198,7 @@ class CAM(tf.keras.layers.Layer):
def __init__(self, def __init__(self,
reduction_ratio=1.0, reduction_ratio=1.0,
kernel_initializer='glorot_uniform', kernel_initializer='VarianceScaling',
bias_initializer='zeros', bias_initializer='zeros',
bias_regularizer=None, bias_regularizer=None,
kernel_regularizer=None, kernel_regularizer=None,
...@@ -1285,7 +1291,7 @@ class CBAM(tf.keras.layers.Layer): ...@@ -1285,7 +1291,7 @@ class CBAM(tf.keras.layers.Layer):
strides=(1, 1), strides=(1, 1),
padding='same', padding='same',
dilation_rate=(1, 1), dilation_rate=(1, 1),
kernel_initializer='glorot_uniform', kernel_initializer='VarianceScaling',
bias_initializer='zeros', bias_initializer='zeros',
bias_regularizer=None, bias_regularizer=None,
kernel_regularizer=None, kernel_regularizer=None,
...@@ -1363,7 +1369,7 @@ class DarkRouteProcess(tf.keras.layers.Layer): ...@@ -1363,7 +1369,7 @@ class DarkRouteProcess(tf.keras.layers.Layer):
insert_cbam=False, insert_cbam=False,
csp_stack=0, csp_stack=0,
csp_scale=2, csp_scale=2,
kernel_initializer='glorot_uniform', kernel_initializer='VarianceScaling',
bias_initializer='zeros', bias_initializer='zeros',
bias_regularizer=None, bias_regularizer=None,
kernel_regularizer=None, kernel_regularizer=None,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment