Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
7e47cd7b
Commit
7e47cd7b
authored
Jul 16, 2020
by
Hongkun Yu
Committed by
A. Unique TensorFlower
Jul 16, 2020
Browse files
Adds clear documentation: Functional/Subclass API used for each network/model.
PiperOrigin-RevId: 321591514
parent
982f457a
Changes
11
Hide whitespace changes
Inline
Side-by-side
Showing
11 changed files
with
31 additions
and
1 deletion
+31
-1
official/nlp/modeling/models/bert_classifier.py
official/nlp/modeling/models/bert_classifier.py
+3
-0
official/nlp/modeling/models/bert_pretrainer.py
official/nlp/modeling/models/bert_pretrainer.py
+3
-0
official/nlp/modeling/models/bert_span_labeler.py
official/nlp/modeling/models/bert_span_labeler.py
+4
-1
official/nlp/modeling/models/bert_token_classifier.py
official/nlp/modeling/models/bert_token_classifier.py
+3
-0
official/nlp/modeling/models/electra_pretrainer.py
official/nlp/modeling/models/electra_pretrainer.py
+3
-0
official/nlp/modeling/networks/albert_transformer_encoder.py
official/nlp/modeling/networks/albert_transformer_encoder.py
+2
-0
official/nlp/modeling/networks/classification.py
official/nlp/modeling/networks/classification.py
+3
-0
official/nlp/modeling/networks/encoder_scaffold.py
official/nlp/modeling/networks/encoder_scaffold.py
+3
-0
official/nlp/modeling/networks/span_labeling.py
official/nlp/modeling/networks/span_labeling.py
+2
-0
official/nlp/modeling/networks/token_classification.py
official/nlp/modeling/networks/token_classification.py
+2
-0
official/nlp/modeling/networks/transformer_encoder.py
official/nlp/modeling/networks/transformer_encoder.py
+3
-0
No files found.
official/nlp/modeling/models/bert_classifier.py
View file @
7e47cd7b
...
...
@@ -37,6 +37,9 @@ class BertClassifier(tf.keras.Model):
instantiates a classification network based on the passed `num_classes`
argument. If `num_classes` is set to 1, a regression network is instantiated.
*Note* that the model is constructed by
[Keras Functional API](https://keras.io/guides/functional_api/).
Arguments:
network: A transformer network. This network should output a sequence output
and a classification output. Furthermore, it should expose its embedding
...
...
official/nlp/modeling/models/bert_pretrainer.py
View file @
7e47cd7b
...
...
@@ -41,6 +41,9 @@ class BertPretrainer(tf.keras.Model):
instantiates the masked language model and classification networks that are
used to create the training objectives.
*Note* that the model is constructed by
[Keras Functional API](https://keras.io/guides/functional_api/).
Arguments:
network: A transformer network. This network should output a sequence output
and a classification output.
...
...
official/nlp/modeling/models/bert_span_labeler.py
View file @
7e47cd7b
...
...
@@ -32,9 +32,12 @@ class BertSpanLabeler(tf.keras.Model):
encoder as described in "BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding" (https://arxiv.org/abs/1810.04805).
The BertSpanLabeler allows a user to pass in a transformer
stack
, and
The BertSpanLabeler allows a user to pass in a transformer
encoder
, and
instantiates a span labeling network based on a single dense layer.
*Note* that the model is constructed by
[Keras Functional API](https://keras.io/guides/functional_api/).
Arguments:
network: A transformer network. This network should output a sequence output
and a classification output. Furthermore, it should expose its embedding
...
...
official/nlp/modeling/models/bert_token_classifier.py
View file @
7e47cd7b
...
...
@@ -36,6 +36,9 @@ class BertTokenClassifier(tf.keras.Model):
instantiates a token classification network based on the passed `num_classes`
argument.
*Note* that the model is constructed by
[Keras Functional API](https://keras.io/guides/functional_api/).
Arguments:
network: A transformer network. This network should output a sequence output
and a classification output. Furthermore, it should expose its embedding
...
...
official/nlp/modeling/models/electra_pretrainer.py
View file @
7e47cd7b
...
...
@@ -39,6 +39,9 @@ class ElectraPretrainer(tf.keras.Model):
model (at generator side) and classification networks (at discriminator side)
that are used to create the training objectives.
*Note* that the model is constructed by Keras Subclass API, where layers are
defined inside __init__ and call() implements the computation.
Arguments:
generator_network: A transformer network for generator, this network should
output a sequence output and an optional classification output.
...
...
official/nlp/modeling/networks/albert_transformer_encoder.py
View file @
7e47cd7b
...
...
@@ -40,6 +40,8 @@ class AlbertTransformerEncoder(tf.keras.Model):
The default values for this object are taken from the ALBERT-Base
implementation described in the paper.
*Note* that the network is constructed by Keras Functional API.
Arguments:
vocab_size: The size of the token vocabulary.
embedding_width: The width of the word embeddings. If the embedding width is
...
...
official/nlp/modeling/networks/classification.py
View file @
7e47cd7b
...
...
@@ -29,6 +29,9 @@ class Classification(tf.keras.Model):
This network implements a simple classifier head based on a dense layer. If
num_classes is one, it can be considered as a regression problem.
*Note* that the network is constructed by
[Keras Functional API](https://keras.io/guides/functional_api/).
Arguments:
input_width: The innermost dimension of the input tensor to this network.
num_classes: The number of classes that this network should classify to. If
...
...
official/nlp/modeling/networks/encoder_scaffold.py
View file @
7e47cd7b
...
...
@@ -49,6 +49,9 @@ class EncoderScaffold(tf.keras.Model):
If the hidden_cls is not overridden, a default transformer layer will be
instantiated.
*Note* that the network is constructed by
[Keras Functional API](https://keras.io/guides/functional_api/).
Arguments:
pooled_output_dim: The dimension of pooled output.
pooler_layer_initializer: The initializer for the classification
...
...
official/nlp/modeling/networks/span_labeling.py
View file @
7e47cd7b
...
...
@@ -27,6 +27,8 @@ class SpanLabeling(tf.keras.Model):
"""Span labeling network head for BERT modeling.
This network implements a simple single-span labeler based on a dense layer.
*Note* that the network is constructed by
[Keras Functional API](https://keras.io/guides/functional_api/).
Arguments:
input_width: The innermost dimension of the input tensor to this network.
...
...
official/nlp/modeling/networks/token_classification.py
View file @
7e47cd7b
...
...
@@ -27,6 +27,8 @@ class TokenClassification(tf.keras.Model):
"""TokenClassification network head for BERT modeling.
This network implements a simple token classifier head based on a dense layer.
*Note* that the network is constructed by
[Keras Functional API](https://keras.io/guides/functional_api/).
Arguments:
input_width: The innermost dimension of the input tensor to this network.
...
...
official/nlp/modeling/networks/transformer_encoder.py
View file @
7e47cd7b
...
...
@@ -39,6 +39,9 @@ class TransformerEncoder(tf.keras.Model):
in "BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding".
*Note* that the network is constructed by
[Keras Functional API](https://keras.io/guides/functional_api/).
Arguments:
vocab_size: The size of the token vocabulary.
hidden_size: The size of the transformer hidden layers.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment