Commit 7d0dc183 authored by syiming's avatar syiming
Browse files

remove min_depth and depth_multiplier feature

parent 1538da90
...@@ -42,8 +42,6 @@ class FasterRCNNResnetV1FpnKerasFeatureExtractor( ...@@ -42,8 +42,6 @@ class FasterRCNNResnetV1FpnKerasFeatureExtractor(
resnet_v1_base_model_name, resnet_v1_base_model_name,
first_stage_features_stride, first_stage_features_stride,
conv_hyperparams, conv_hyperparams,
min_depth,
depth_multiplier,
batch_norm_trainable=False, batch_norm_trainable=False,
weight_decay=0.0, weight_decay=0.0,
fpn_min_level=2, fpn_min_level=2,
...@@ -61,9 +59,6 @@ class FasterRCNNResnetV1FpnKerasFeatureExtractor( ...@@ -61,9 +59,6 @@ class FasterRCNNResnetV1FpnKerasFeatureExtractor(
conv_hyperparameters: a `hyperparams_builder.KerasLayerHyperparams` object conv_hyperparameters: a `hyperparams_builder.KerasLayerHyperparams` object
containing convolution hyperparameters for the layers added on top of containing convolution hyperparameters for the layers added on top of
the base feature extractor. the base feature extractor.
min_depth: Minimum number of filters in the convolutional layers.
depth_multiplier: The depth multiplier to modify the number of filters
in the convolutional layers.
batch_norm_trainable: See base class. batch_norm_trainable: See base class.
weight_decay: See base class. weight_decay: See base class.
fpn_min_level: the highest resolution feature map to use in FPN. The valid fpn_min_level: the highest resolution feature map to use in FPN. The valid
...@@ -94,8 +89,6 @@ class FasterRCNNResnetV1FpnKerasFeatureExtractor( ...@@ -94,8 +89,6 @@ class FasterRCNNResnetV1FpnKerasFeatureExtractor(
self._resnet_v1_base_model = resnet_v1_base_model self._resnet_v1_base_model = resnet_v1_base_model
self._resnet_v1_base_model_name = resnet_v1_base_model_name self._resnet_v1_base_model_name = resnet_v1_base_model_name
self._conv_hyperparams = conv_hyperparams self._conv_hyperparams = conv_hyperparams
self._min_depth = min_depth
self._depth_multiplier = depth_multiplier
self._fpn_min_level = fpn_min_level self._fpn_min_level = fpn_min_level
self._fpn_max_level = fpn_max_level self._fpn_max_level = fpn_max_level
self._additional_layer_depth = additional_layer_depth self._additional_layer_depth = additional_layer_depth
...@@ -152,8 +145,6 @@ class FasterRCNNResnetV1FpnKerasFeatureExtractor( ...@@ -152,8 +145,6 @@ class FasterRCNNResnetV1FpnKerasFeatureExtractor(
conv_hyperparams=(self._conv_hyperparams conv_hyperparams=(self._conv_hyperparams
if self._override_base_feature_extractor_hyperparams if self._override_base_feature_extractor_hyperparams
else None), else None),
min_depth=self._min_depth,
depth_multiplier=self._depth_multiplier,
classes=None, classes=None,
weights=None, weights=None,
include_top=False) include_top=False)
...@@ -166,14 +157,12 @@ class FasterRCNNResnetV1FpnKerasFeatureExtractor( ...@@ -166,14 +157,12 @@ class FasterRCNNResnetV1FpnKerasFeatureExtractor(
backbone_outputs = self.classification_backbone(full_resnet_v1_model.inputs) backbone_outputs = self.classification_backbone(full_resnet_v1_model.inputs)
# construct FPN feature generator # construct FPN feature generator
self._depth_fn = lambda d: max(
int(d * self._depth_multiplier), self._min_depth)
self._base_fpn_max_level = min(self._fpn_max_level, 5) self._base_fpn_max_level = min(self._fpn_max_level, 5)
self._num_levels = self._base_fpn_max_level + 1 - self._fpn_min_level self._num_levels = self._base_fpn_max_level + 1 - self._fpn_min_level
self._fpn_features_generator = ( self._fpn_features_generator = (
feature_map_generators.KerasFpnTopDownFeatureMaps( feature_map_generators.KerasFpnTopDownFeatureMaps(
num_levels=self._num_levels, num_levels=self._num_levels,
depth=self._depth_fn(self._additional_layer_depth), depth=self._additional_layer_depth,
is_training=self._is_training, is_training=self._is_training,
conv_hyperparams=self._conv_hyperparams, conv_hyperparams=self._conv_hyperparams,
freeze_batchnorm=self._freeze_batchnorm, freeze_batchnorm=self._freeze_batchnorm,
...@@ -232,8 +221,6 @@ class FasterRCNNResnet50FpnKerasFeatureExtractor( ...@@ -232,8 +221,6 @@ class FasterRCNNResnet50FpnKerasFeatureExtractor(
is_training, is_training,
first_stage_features_stride=16, first_stage_features_stride=16,
conv_hyperparams=None, conv_hyperparams=None,
min_depth=16,
depth_multiplier=1,
batch_norm_trainable=False, batch_norm_trainable=False,
weight_decay=0.0, weight_decay=0.0,
fpn_min_level=2, fpn_min_level=2,
...@@ -246,8 +233,6 @@ class FasterRCNNResnet50FpnKerasFeatureExtractor( ...@@ -246,8 +233,6 @@ class FasterRCNNResnet50FpnKerasFeatureExtractor(
is_training: See base class. is_training: See base class.
first_stage_features_stride: See base class. first_stage_features_stride: See base class.
conv_hyperparams: See base class. conv_hyperparams: See base class.
min_depth: See base class.
depth_multiplier: See base class.
batch_norm_trainable: See base class. batch_norm_trainable: See base class.
weight_decay: See base class. weight_decay: See base class.
fpn_min_level: See base class. fpn_min_level: See base class.
...@@ -259,8 +244,6 @@ class FasterRCNNResnet50FpnKerasFeatureExtractor( ...@@ -259,8 +244,6 @@ class FasterRCNNResnet50FpnKerasFeatureExtractor(
is_training=is_training, is_training=is_training,
first_stage_features_stride=first_stage_features_stride, first_stage_features_stride=first_stage_features_stride,
conv_hyperparams=conv_hyperparams, conv_hyperparams=conv_hyperparams,
min_depth=min_depth,
depth_multiplier=depth_multiplier,
resnet_v1_base_model=resnet_v1.resnet_v1_50, resnet_v1_base_model=resnet_v1.resnet_v1_50,
resnet_v1_base_model_name='resnet_v1_50', resnet_v1_base_model_name='resnet_v1_50',
batch_norm_trainable=batch_norm_trainable, batch_norm_trainable=batch_norm_trainable,
...@@ -278,8 +261,6 @@ class FasterRCNNResnet101FpnKerasFeatureExtractor( ...@@ -278,8 +261,6 @@ class FasterRCNNResnet101FpnKerasFeatureExtractor(
is_training, is_training,
first_stage_features_stride=16, first_stage_features_stride=16,
conv_hyperparams=None, conv_hyperparams=None,
min_depth=16,
depth_multiplier=1,
batch_norm_trainable=False, batch_norm_trainable=False,
weight_decay=0.0, weight_decay=0.0,
fpn_min_level=2, fpn_min_level=2,
...@@ -292,8 +273,6 @@ class FasterRCNNResnet101FpnKerasFeatureExtractor( ...@@ -292,8 +273,6 @@ class FasterRCNNResnet101FpnKerasFeatureExtractor(
is_training: See base class. is_training: See base class.
first_stage_features_stride: See base class. first_stage_features_stride: See base class.
conv_hyperparams: See base class. conv_hyperparams: See base class.
min_depth: See base class.
depth_multiplier: See base class.
batch_norm_trainable: See base class. batch_norm_trainable: See base class.
weight_decay: See base class. weight_decay: See base class.
fpn_min_level: See base class. fpn_min_level: See base class.
...@@ -305,8 +284,6 @@ class FasterRCNNResnet101FpnKerasFeatureExtractor( ...@@ -305,8 +284,6 @@ class FasterRCNNResnet101FpnKerasFeatureExtractor(
is_training=is_training, is_training=is_training,
first_stage_features_stride=first_stage_features_stride, first_stage_features_stride=first_stage_features_stride,
conv_hyperparams=conv_hyperparams, conv_hyperparams=conv_hyperparams,
min_depth=min_depth,
depth_multiplier=depth_multiplier,
resnet_v1_base_model=resnet_v1.resnet_v1_101, resnet_v1_base_model=resnet_v1.resnet_v1_101,
resnet_v1_base_model_name='resnet_v1_101', resnet_v1_base_model_name='resnet_v1_101',
batch_norm_trainable=batch_norm_trainable, batch_norm_trainable=batch_norm_trainable,
...@@ -325,8 +302,6 @@ class FasterRCNNResnet152FpnKerasFeatureExtractor( ...@@ -325,8 +302,6 @@ class FasterRCNNResnet152FpnKerasFeatureExtractor(
is_training, is_training,
first_stage_features_stride=16, first_stage_features_stride=16,
conv_hyperparams=None, conv_hyperparams=None,
min_depth=16,
depth_multiplier=1,
batch_norm_trainable=False, batch_norm_trainable=False,
weight_decay=0.0, weight_decay=0.0,
fpn_min_level=2, fpn_min_level=2,
...@@ -339,8 +314,6 @@ class FasterRCNNResnet152FpnKerasFeatureExtractor( ...@@ -339,8 +314,6 @@ class FasterRCNNResnet152FpnKerasFeatureExtractor(
is_training: See base class. is_training: See base class.
first_stage_features_stride: See base class. first_stage_features_stride: See base class.
conv_hyperparams: See base class. conv_hyperparams: See base class.
min_depth: See base class.
depth_multiplier: See base class.
batch_norm_trainable: See base class. batch_norm_trainable: See base class.
weight_decay: See base class. weight_decay: See base class.
fpn_min_level: See base class. fpn_min_level: See base class.
...@@ -352,8 +325,6 @@ class FasterRCNNResnet152FpnKerasFeatureExtractor( ...@@ -352,8 +325,6 @@ class FasterRCNNResnet152FpnKerasFeatureExtractor(
is_training=is_training, is_training=is_training,
first_stage_features_stride=first_stage_features_stride, first_stage_features_stride=first_stage_features_stride,
conv_hyperparams=conv_hyperparams, conv_hyperparams=conv_hyperparams,
min_depth=min_depth,
depth_multiplier=depth_multiplier,
resnet_v1_base_model=resnet_v1.resnet_v1_152, resnet_v1_base_model=resnet_v1.resnet_v1_152,
resnet_v1_base_model_name='resnet_v1_152', resnet_v1_base_model_name='resnet_v1_152',
batch_norm_trainable=batch_norm_trainable, batch_norm_trainable=batch_norm_trainable,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment