Commit 7a6b3acf authored by Menglong Zhu's avatar Menglong Zhu Committed by dreamdragon
Browse files

Adding tests for lstm_cells.py.

PiperOrigin-RevId: 207936241
parent 198af9e8
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for lstm_object_detection.lstm.lstm_cells."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from lstm_object_detection.lstm import lstm_cells
class BottleneckConvLstmCellsTest(tf.test.TestCase):
def test_run_lstm_cell(self):
filter_size = [3, 3]
output_size = [10, 10]
num_units = 15
state_name = 'lstm_state'
batch_size = 4
dtype = tf.float32
learned_state = False
inputs = tf.zeros([4, 10, 10, 3], dtype=tf.float32)
cell = lstm_cells.BottleneckConvLSTMCell(
filter_size=filter_size,
output_size=output_size,
num_units=num_units)
init_state = cell.init_state(
state_name, batch_size, dtype, learned_state)
output, state_tuple = cell(inputs, init_state)
self.assertAllEqual([4, 10, 10, 15], output.shape.as_list())
self.assertAllEqual([4, 10, 10, 15], state_tuple[0].shape.as_list())
self.assertAllEqual([4, 10, 10, 15], state_tuple[1].shape.as_list())
def test_run_lstm_cell_with_flattened_state(self):
filter_size = [3, 3]
output_dim = 10
output_size = [output_dim] * 2
num_units = 15
state_name = 'lstm_state'
batch_size = 4
dtype = tf.float32
learned_state = False
inputs = tf.zeros([batch_size, output_dim, output_dim, 3], dtype=tf.float32)
cell = lstm_cells.BottleneckConvLSTMCell(
filter_size=filter_size,
output_size=output_size,
num_units=num_units,
flattened_state=True)
init_state = cell.init_state(
state_name, batch_size, dtype, learned_state)
output, state_tuple = cell(inputs, init_state)
self.assertAllEqual([4, 1500], output.shape.as_list())
self.assertAllEqual([4, 1500], state_tuple[0].shape.as_list())
self.assertAllEqual([4, 1500], state_tuple[1].shape.as_list())
def test_get_init_state(self):
filter_size = [3, 3]
output_dim = 10
output_size = [output_dim] * 2
num_units = 15
state_name = 'lstm_state'
batch_size = 4
dtype = tf.float32
learned_state = False
cell = lstm_cells.BottleneckConvLSTMCell(
filter_size=filter_size,
output_size=output_size,
num_units=num_units)
init_c, init_h = cell.init_state(
state_name, batch_size, dtype, learned_state)
self.assertEqual(tf.float32, init_c.dtype)
self.assertEqual(tf.float32, init_h.dtype)
with self.test_session() as sess:
init_c_res, init_h_res = sess.run([init_c, init_h])
self.assertAllClose(np.zeros((4, 10, 10, 15)), init_c_res)
self.assertAllClose(np.zeros((4, 10, 10, 15)), init_h_res)
def test_get_init_learned_state(self):
filter_size = [3, 3]
output_size = [10, 10]
num_units = 15
state_name = 'lstm_state'
batch_size = 4
dtype = tf.float32
learned_state = True
cell = lstm_cells.BottleneckConvLSTMCell(
filter_size=filter_size,
output_size=output_size,
num_units=num_units)
init_c, init_h = cell.init_state(
state_name, batch_size, dtype, learned_state)
self.assertEqual(tf.float32, init_c.dtype)
self.assertEqual(tf.float32, init_h.dtype)
self.assertAllEqual([4, 10, 10, 15], init_c.shape.as_list())
self.assertAllEqual([4, 10, 10, 15], init_h.shape.as_list())
if __name__ == '__main__':
tf.test.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment