Commit 7522e4dc authored by Toby Boyd's avatar Toby Boyd
Browse files

fix lint issues

parent c868da8b
...@@ -23,9 +23,9 @@ from __future__ import absolute_import ...@@ -23,9 +23,9 @@ from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
import warnings
import tensorflow as tf import tensorflow as tf
from tensorflow.python.keras import backend
from tensorflow.python.keras import layers
BATCH_NORM_DECAY = 0.997 BATCH_NORM_DECAY = 0.997
...@@ -180,7 +180,6 @@ def resnet56(classes=100, training=None): ...@@ -180,7 +180,6 @@ def resnet56(classes=100, training=None):
"""Instantiates the ResNet56 architecture. """Instantiates the ResNet56 architecture.
Arguments: Arguments:
input_shape: optional shape tuple
classes: optional number of classes to classify images into classes: optional number of classes to classify images into
training: Only used if training keras model with Estimator. In other training: Only used if training keras model with Estimator. In other
scenarios it is handled automatically. scenarios it is handled automatically.
...@@ -192,10 +191,11 @@ def resnet56(classes=100, training=None): ...@@ -192,10 +191,11 @@ def resnet56(classes=100, training=None):
if backend.image_data_format() == 'channels_first': if backend.image_data_format() == 'channels_first':
input_shape = (3, 32, 32) input_shape = (3, 32, 32)
bn_axis = 1 bn_axis = 1
else: # channel_last else: # channel_last
input_shape = (32, 32, 3) input_shape = (32, 32, 3)
bn_axis = 3 bn_axis = 3
img_input = layers.Input(shape=input_shape)
x = tf.keras.layers.ZeroPadding2D(padding=(1, 1), name='conv1_pad')(img_input) x = tf.keras.layers.ZeroPadding2D(padding=(1, 1), name='conv1_pad')(img_input)
x = tf.keras.layers.Conv2D(16, (3, 3), x = tf.keras.layers.Conv2D(16, (3, 3),
strides=(1, 1), strides=(1, 1),
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment