Commit 720d6e39 authored by Jaehong Kim's avatar Jaehong Kim Committed by A. Unique TensorFlower
Browse files

Makes MV3 e2e quantized without any additional dequant op.

PiperOrigin-RevId: 430869666
parent dc804f33
......@@ -435,7 +435,7 @@ class Conv2DBNBlockQuantized(tf.keras.layers.Layer):
conv2d_quantized = _quantize_wrapped_layer(
tf.keras.layers.Conv2D,
configs.Default8BitConvQuantizeConfig(
['kernel'], ['activation'], False))
['kernel'], ['activation'], not self._use_normalization))
self._conv0 = conv2d_quantized(
filters=self._filters,
kernel_size=self._kernel_size,
......
......@@ -21,6 +21,7 @@ import tensorflow as tf
import tensorflow_model_optimization as tfmot
from official.modeling import tf_utils
from official.projects.qat.vision.quantization import configs
from official.projects.qat.vision.quantization import helper
from official.vision.beta.modeling.decoders import aspp
from official.vision.beta.modeling.layers import nn_layers
......@@ -61,7 +62,9 @@ def _quantize_wrapped_layer(cls, quantize_config):
@tf.keras.utils.register_keras_serializable(package='Vision')
class SqueezeExcitationQuantized(tf.keras.layers.Layer):
class SqueezeExcitationQuantized(
helper.LayerQuantizerHelper,
tf.keras.layers.Layer):
"""Creates a squeeze and excitation layer."""
def __init__(self,
......@@ -129,9 +132,8 @@ class SqueezeExcitationQuantized(tf.keras.layers.Layer):
# Convert hard_sigmoid activation to quantizable keras layers so each op
# can be properly quantized.
# Formula is hard_sigmoid(x) = relu6(x + 3) * 0.16667.
self._add = tfmot.quantization.keras.QuantizeWrapperV2(
tf.keras.layers.Add(), configs.Default8BitQuantizeConfig([], [],
True))
self._add_quantizer('add_three')
self._add_quantizer('divide_six')
self._relu6 = tfmot.quantization.keras.QuantizeWrapperV2(
tf_utils.get_activation('relu6', use_keras_layer=True),
configs.Default8BitActivationQuantizeConfig())
......@@ -141,11 +143,12 @@ class SqueezeExcitationQuantized(tf.keras.layers.Layer):
self._gating_activation, use_keras_layer=True),
configs.Default8BitActivationQuantizeConfig())
def _apply_gating_activation_layer(self, x: tf.Tensor) -> tf.Tensor:
def _apply_gating_activation_layer(
self, x: tf.Tensor, training: bool) -> tf.Tensor:
if self._gating_activation == 'hard_sigmoid':
x = self._add([x, 3.0 * tf.ones_like(x)])
x = self._apply_quantizer('add_three', x + 3.0, training)
x = self._relu6(x)
x = self._multiply([x, 0.16667 * tf.ones_like(x)])
x = self._apply_quantizer('divide_six', x * 1.6667, training)
else:
x = self._gating_activation_layer(x)
return x
......@@ -200,6 +203,7 @@ class SqueezeExcitationQuantized(tf.keras.layers.Layer):
configs.Default8BitActivationQuantizeConfig())
self._create_gating_activation_layer()
self._build_quantizer_vars()
super().build(input_shape)
def get_config(self):
......@@ -224,7 +228,7 @@ class SqueezeExcitationQuantized(tf.keras.layers.Layer):
x = self._reduce_mean_quantizer(
x, training, self._reduce_mean_quantizer_vars)
x = self._activation_layer(self._se_reduce(x))
x = self._apply_gating_activation_layer(self._se_expand(x))
x = self._apply_gating_activation_layer(self._se_expand(x), training)
x = self._multiply([x, inputs])
return x
......
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Quantization helpers."""
import tensorflow_model_optimization as tfmot
class LayerQuantizerHelper(object):
"""Helper class that handles quantizers."""
def __init__(self, *args, **kwargs):
self._quantizers = {}
self._quantizer_vars = {}
super().__init__(*args, **kwargs)
def _all_value_quantizer(self):
return tfmot.quantization.keras.quantizers.AllValuesQuantizer(
num_bits=8, per_axis=False, symmetric=False, narrow_range=False)
def _moving_average_quantizer(self):
return tfmot.quantization.keras.quantizers.MovingAverageQuantizer(
num_bits=8, per_axis=False, symmetric=False, narrow_range=False)
def _add_quantizer(self, name, all_value_quantizer=False):
if all_value_quantizer:
self._quantizers[name] = self._all_value_quantizer()
else:
self._quantizers[name] = self._moving_average_quantizer()
def _apply_quantizer(self, name, inputs, training, **kwargs):
return self._quantizers[name](
inputs, training, self._quantizer_vars[name], **kwargs)
def _build_quantizer_vars(self):
for name in self._quantizers:
self._quantizer_vars[name] = self._quantizers[name].build(
tensor_shape=None, name=name, layer=self)
......@@ -33,6 +33,8 @@ LayerPattern = tfmot.quantization.keras.graph_transformations.transforms.LayerPa
_QUANTIZATION_WEIGHT_NAMES = [
'output_max', 'output_min', 'optimizer_step',
'kernel_min', 'kernel_max',
'add_three_min', 'add_three_max',
'divide_six_min', 'divide_six_max',
'depthwise_kernel_min', 'depthwise_kernel_max',
'reduce_mean_quantizer_vars_min', 'reduce_mean_quantizer_vars_max']
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment