"references/git@developer.sourcefind.cn:OpenDAS/vision.git" did not exist on "c2ab0c59f42babf9ad01aa616cd8a901daac86dd"
Unverified Commit 70629555 authored by cclauss's avatar cclauss Committed by GitHub
Browse files

Merge branch 'master' into undefined-v-in-python3

parents 459f6ec1 31adae53
...@@ -122,7 +122,7 @@ def model_fn(features, labels, mode, params): ...@@ -122,7 +122,7 @@ def model_fn(features, labels, mode, params):
eval_metric_ops={ eval_metric_ops={
'accuracy': 'accuracy':
tf.metrics.accuracy( tf.metrics.accuracy(
labels=tf.argmax(labels, axis=1), labels=labels,
predictions=tf.argmax(logits, axis=1)), predictions=tf.argmax(logits, axis=1)),
}) })
......
...@@ -18,63 +18,33 @@ from __future__ import absolute_import ...@@ -18,63 +18,33 @@ from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
import argparse
import os import os
import sys import sys
import tensorflow as tf import tensorflow as tf
import resnet_model import resnet_model
import resnet_shared
parser = argparse.ArgumentParser()
# Basic model parameters.
parser.add_argument('--data_dir', type=str, default='/tmp/cifar10_data',
help='The path to the CIFAR-10 data directory.')
parser.add_argument('--model_dir', type=str, default='/tmp/cifar10_model',
help='The directory where the model will be stored.')
parser.add_argument('--resnet_size', type=int, default=32,
help='The size of the ResNet model to use.')
parser.add_argument('--train_epochs', type=int, default=250,
help='The number of epochs to train.')
parser.add_argument('--epochs_per_eval', type=int, default=10,
help='The number of epochs to run in between evaluations.')
parser.add_argument('--batch_size', type=int, default=128,
help='The number of images per batch.')
parser.add_argument(
'--data_format', type=str, default=None,
choices=['channels_first', 'channels_last'],
help='A flag to override the data format used in the model. channels_first '
'provides a performance boost on GPU but is not always compatible '
'with CPU. If left unspecified, the data format will be chosen '
'automatically based on whether TensorFlow was built for CPU or GPU.')
_HEIGHT = 32 _HEIGHT = 32
_WIDTH = 32 _WIDTH = 32
_DEPTH = 3 _NUM_CHANNELS = 3
_DEFAULT_IMAGE_BYTES = _HEIGHT * _WIDTH * _NUM_CHANNELS
_NUM_CLASSES = 10 _NUM_CLASSES = 10
_NUM_DATA_FILES = 5 _NUM_DATA_FILES = 5
# We use a weight decay of 0.0002, which performs better than the 0.0001 that
# was originally suggested.
_WEIGHT_DECAY = 2e-4
_MOMENTUM = 0.9
_NUM_IMAGES = { _NUM_IMAGES = {
'train': 50000, 'train': 50000,
'validation': 10000, 'validation': 10000,
} }
###############################################################################
# Data processing
###############################################################################
def record_dataset(filenames): def record_dataset(filenames):
"""Returns an input pipeline Dataset from `filenames`.""" """Returns an input pipeline Dataset from `filenames`."""
record_bytes = _HEIGHT * _WIDTH * _DEPTH + 1 record_bytes = _DEFAULT_IMAGE_BYTES + 1
return tf.data.FixedLengthRecordDataset(filenames, record_bytes) return tf.data.FixedLengthRecordDataset(filenames, record_bytes)
...@@ -100,8 +70,7 @@ def parse_record(raw_record): ...@@ -100,8 +70,7 @@ def parse_record(raw_record):
# Every record consists of a label followed by the image, with a fixed number # Every record consists of a label followed by the image, with a fixed number
# of bytes for each. # of bytes for each.
label_bytes = 1 label_bytes = 1
image_bytes = _HEIGHT * _WIDTH * _DEPTH record_bytes = label_bytes + _DEFAULT_IMAGE_BYTES
record_bytes = label_bytes + image_bytes
# Convert bytes to a vector of uint8 that is record_bytes long. # Convert bytes to a vector of uint8 that is record_bytes long.
record_vector = tf.decode_raw(raw_record, tf.uint8) record_vector = tf.decode_raw(raw_record, tf.uint8)
...@@ -113,8 +82,8 @@ def parse_record(raw_record): ...@@ -113,8 +82,8 @@ def parse_record(raw_record):
# The remaining bytes after the label represent the image, which we reshape # The remaining bytes after the label represent the image, which we reshape
# from [depth * height * width] to [depth, height, width]. # from [depth * height * width] to [depth, height, width].
depth_major = tf.reshape( depth_major = tf.reshape(record_vector[label_bytes:record_bytes],
record_vector[label_bytes:record_bytes], [_DEPTH, _HEIGHT, _WIDTH]) [_NUM_CHANNELS, _HEIGHT, _WIDTH])
# Convert from [depth, height, width] to [height, width, depth], and cast as # Convert from [depth, height, width] to [height, width, depth], and cast as
# float32. # float32.
...@@ -131,7 +100,7 @@ def preprocess_image(image, is_training): ...@@ -131,7 +100,7 @@ def preprocess_image(image, is_training):
image, _HEIGHT + 8, _WIDTH + 8) image, _HEIGHT + 8, _WIDTH + 8)
# Randomly crop a [_HEIGHT, _WIDTH] section of the image. # Randomly crop a [_HEIGHT, _WIDTH] section of the image.
image = tf.random_crop(image, [_HEIGHT, _WIDTH, _DEPTH]) image = tf.random_crop(image, [_HEIGHT, _WIDTH, _NUM_CHANNELS])
# Randomly flip the image horizontally. # Randomly flip the image horizontally.
image = tf.image.random_flip_left_right(image) image = tf.image.random_flip_left_right(image)
...@@ -180,116 +149,81 @@ def input_fn(is_training, data_dir, batch_size, num_epochs=1): ...@@ -180,116 +149,81 @@ def input_fn(is_training, data_dir, batch_size, num_epochs=1):
return images, labels return images, labels
def cifar10_model_fn(features, labels, mode, params): ###############################################################################
"""Model function for CIFAR-10.""" # Running the model
tf.summary.image('images', features, max_outputs=6) ###############################################################################
class Cifar10Model(resnet_model.Model):
network = resnet_model.cifar10_resnet_v2_generator(
params['resnet_size'], _NUM_CLASSES, params['data_format']) def __init__(self, resnet_size, data_format=None):
"""These are the parameters that work for CIFAR-10 data.
inputs = tf.reshape(features, [-1, _HEIGHT, _WIDTH, _DEPTH]) """
logits = network(inputs, mode == tf.estimator.ModeKeys.TRAIN) if resnet_size % 6 != 2:
raise ValueError('resnet_size must be 6n + 2:', resnet_size)
predictions = {
'classes': tf.argmax(logits, axis=1), num_blocks = (resnet_size - 2) // 6
'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
} super(Cifar10Model, self).__init__(
resnet_size=resnet_size,
if mode == tf.estimator.ModeKeys.PREDICT: num_classes=_NUM_CLASSES,
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions) num_filters=16,
kernel_size=3,
# Calculate loss, which includes softmax cross entropy and L2 regularization. conv_stride=1,
cross_entropy = tf.losses.softmax_cross_entropy( first_pool_size=None,
logits=logits, onehot_labels=labels) first_pool_stride=None,
second_pool_size=8,
# Create a tensor named cross_entropy for logging purposes. second_pool_stride=1,
tf.identity(cross_entropy, name='cross_entropy') block_fn=resnet_model.building_block,
tf.summary.scalar('cross_entropy', cross_entropy) block_sizes=[num_blocks] * 3,
block_strides=[1, 2, 2],
# Add weight decay to the loss. final_size=64,
loss = cross_entropy + _WEIGHT_DECAY * tf.add_n( data_format=data_format)
[tf.nn.l2_loss(v) for v in tf.trainable_variables()])
if mode == tf.estimator.ModeKeys.TRAIN:
# Scale the learning rate linearly with the batch size. When the batch size
# is 128, the learning rate should be 0.1.
initial_learning_rate = 0.1 * params['batch_size'] / 128
batches_per_epoch = _NUM_IMAGES['train'] / params['batch_size']
global_step = tf.train.get_or_create_global_step()
# Multiply the learning rate by 0.1 at 100, 150, and 200 epochs.
boundaries = [int(batches_per_epoch * epoch) for epoch in [100, 150, 200]]
values = [initial_learning_rate * decay for decay in [1, 0.1, 0.01, 0.001]]
learning_rate = tf.train.piecewise_constant(
tf.cast(global_step, tf.int32), boundaries, values)
# Create a tensor named learning_rate for logging purposes
tf.identity(learning_rate, name='learning_rate')
tf.summary.scalar('learning_rate', learning_rate)
optimizer = tf.train.MomentumOptimizer(
learning_rate=learning_rate,
momentum=_MOMENTUM)
# Batch norm requires update ops to be added as a dependency to the train_op
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss, global_step)
else:
train_op = None
accuracy = tf.metrics.accuracy(
tf.argmax(labels, axis=1), predictions['classes'])
metrics = {'accuracy': accuracy}
# Create a tensor named train_accuracy for logging purposes
tf.identity(accuracy[1], name='train_accuracy')
tf.summary.scalar('train_accuracy', accuracy[1])
return tf.estimator.EstimatorSpec( def cifar10_model_fn(features, labels, mode, params):
mode=mode, """Model function for CIFAR-10."""
predictions=predictions, features = tf.reshape(features, [-1, _HEIGHT, _WIDTH, _NUM_CHANNELS])
loss=loss,
train_op=train_op, learning_rate_fn = resnet_shared.learning_rate_with_decay(
eval_metric_ops=metrics) batch_size=params['batch_size'], batch_denom=128,
num_images=_NUM_IMAGES['train'], boundary_epochs=[100, 150, 200],
decay_rates=[1, 0.1, 0.01, 0.001])
# We use a weight decay of 0.0002, which performs better
# than the 0.0001 that was originally suggested.
weight_decay = 2e-4
# Empirical testing showed that including batch_normalization variables
# in the calculation of regularized loss helped validation accuracy
# for the CIFAR-10 dataset, perhaps because the regularization prevents
# overfitting on the small data set. We therefore include all vars when
# regularizing and computing loss during training.
def loss_filter_fn(name):
return True
return resnet_shared.resnet_model_fn(features, labels, mode, Cifar10Model,
resnet_size=params['resnet_size'],
weight_decay=weight_decay,
learning_rate_fn=learning_rate_fn,
momentum=0.9,
data_format=params['data_format'],
loss_filter_fn=loss_filter_fn)
def main(unused_argv): def main(unused_argv):
# Using the Winograd non-fused algorithms provides a small performance boost. resnet_shared.resnet_main(FLAGS, cifar10_model_fn, input_fn)
os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'
# Set up a RunConfig to only save checkpoints once per training cycle.
run_config = tf.estimator.RunConfig().replace(save_checkpoints_secs=1e9)
cifar_classifier = tf.estimator.Estimator(
model_fn=cifar10_model_fn, model_dir=FLAGS.model_dir, config=run_config,
params={
'resnet_size': FLAGS.resnet_size,
'data_format': FLAGS.data_format,
'batch_size': FLAGS.batch_size,
})
for _ in range(FLAGS.train_epochs // FLAGS.epochs_per_eval):
tensors_to_log = {
'learning_rate': 'learning_rate',
'cross_entropy': 'cross_entropy',
'train_accuracy': 'train_accuracy'
}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=100)
cifar_classifier.train(
input_fn=lambda: input_fn(
True, FLAGS.data_dir, FLAGS.batch_size, FLAGS.epochs_per_eval),
hooks=[logging_hook])
# Evaluate the model and print results
eval_results = cifar_classifier.evaluate(
input_fn=lambda: input_fn(False, FLAGS.data_dir, FLAGS.batch_size))
print(eval_results)
if __name__ == '__main__': if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO) tf.logging.set_verbosity(tf.logging.INFO)
parser = resnet_shared.ResnetArgParser()
# Set defaults that are reasonable for this model.
parser.set_defaults(data_dir='/tmp/cifar10_data',
model_dir='/tmp/cifar10_model',
resnet_size=32,
train_epochs=250,
epochs_per_eval=10,
batch_size=128)
FLAGS, unparsed = parser.parse_known_args() FLAGS, unparsed = parser.parse_known_args()
tf.app.run(argv=[sys.argv[0]] + unparsed) tf.app.run(argv=[sys.argv[0]] + unparsed)
...@@ -18,55 +18,18 @@ from __future__ import absolute_import ...@@ -18,55 +18,18 @@ from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
import argparse
import os import os
import sys import sys
import tensorflow as tf import tensorflow as tf
import resnet_model import resnet_model
import resnet_shared
import vgg_preprocessing import vgg_preprocessing
parser = argparse.ArgumentParser()
parser.add_argument(
'--data_dir', type=str, default='',
help='The directory where the ImageNet input data is stored.')
parser.add_argument(
'--model_dir', type=str, default='/tmp/resnet_model',
help='The directory where the model will be stored.')
parser.add_argument(
'--resnet_size', type=int, default=50, choices=[18, 34, 50, 101, 152, 200],
help='The size of the ResNet model to use.')
parser.add_argument(
'--train_epochs', type=int, default=100,
help='The number of epochs to use for training.')
parser.add_argument(
'--epochs_per_eval', type=int, default=1,
help='The number of training epochs to run between evaluations.')
parser.add_argument(
'--batch_size', type=int, default=32,
help='Batch size for training and evaluation.')
parser.add_argument(
'--data_format', type=str, default=None,
choices=['channels_first', 'channels_last'],
help='A flag to override the data format used in the model. channels_first '
'provides a performance boost on GPU but is not always compatible '
'with CPU. If left unspecified, the data format will be chosen '
'automatically based on whether TensorFlow was built for CPU or GPU.')
_DEFAULT_IMAGE_SIZE = 224 _DEFAULT_IMAGE_SIZE = 224
_NUM_CHANNELS = 3 _NUM_CHANNELS = 3
_LABEL_CLASSES = 1001 _NUM_CLASSES = 1001
_MOMENTUM = 0.9
_WEIGHT_DECAY = 1e-4
_NUM_IMAGES = { _NUM_IMAGES = {
'train': 1281167, 'train': 1281167,
...@@ -77,6 +40,9 @@ _FILE_SHUFFLE_BUFFER = 1024 ...@@ -77,6 +40,9 @@ _FILE_SHUFFLE_BUFFER = 1024
_SHUFFLE_BUFFER = 1500 _SHUFFLE_BUFFER = 1500
###############################################################################
# Data processing
###############################################################################
def filenames(is_training, data_dir): def filenames(is_training, data_dir):
"""Return filenames for dataset.""" """Return filenames for dataset."""
if is_training: if is_training:
...@@ -89,7 +55,7 @@ def filenames(is_training, data_dir): ...@@ -89,7 +55,7 @@ def filenames(is_training, data_dir):
for i in range(128)] for i in range(128)]
def record_parser(value, is_training): def parse_record(raw_record, is_training):
"""Parse an ImageNet record from `value`.""" """Parse an ImageNet record from `value`."""
keys_to_features = { keys_to_features = {
'image/encoded': 'image/encoded':
...@@ -112,7 +78,7 @@ def record_parser(value, is_training): ...@@ -112,7 +78,7 @@ def record_parser(value, is_training):
tf.VarLenFeature(dtype=tf.int64), tf.VarLenFeature(dtype=tf.int64),
} }
parsed = tf.parse_single_example(value, keys_to_features) parsed = tf.parse_single_example(raw_record, keys_to_features)
image = tf.image.decode_image( image = tf.image.decode_image(
tf.reshape(parsed['image/encoded'], shape=[]), tf.reshape(parsed['image/encoded'], shape=[]),
...@@ -129,18 +95,19 @@ def record_parser(value, is_training): ...@@ -129,18 +95,19 @@ def record_parser(value, is_training):
tf.reshape(parsed['image/class/label'], shape=[]), tf.reshape(parsed['image/class/label'], shape=[]),
dtype=tf.int32) dtype=tf.int32)
return image, tf.one_hot(label, _LABEL_CLASSES) return image, tf.one_hot(label, _NUM_CLASSES)
def input_fn(is_training, data_dir, batch_size, num_epochs=1): def input_fn(is_training, data_dir, batch_size, num_epochs=1):
"""Input function which provides batches for train or eval.""" """Input function which provides batches for train or eval."""
dataset = tf.data.Dataset.from_tensor_slices(filenames(is_training, data_dir)) dataset = tf.data.Dataset.from_tensor_slices(
filenames(is_training, data_dir))
if is_training: if is_training:
dataset = dataset.shuffle(buffer_size=_FILE_SHUFFLE_BUFFER) dataset = dataset.shuffle(buffer_size=_FILE_SHUFFLE_BUFFER)
dataset = dataset.flat_map(tf.data.TFRecordDataset) dataset = dataset.flat_map(tf.data.TFRecordDataset)
dataset = dataset.map(lambda value: record_parser(value, is_training), dataset = dataset.map(lambda value: parse_record(value, is_training),
num_parallel_calls=5) num_parallel_calls=5)
dataset = dataset.prefetch(batch_size) dataset = dataset.prefetch(batch_size)
...@@ -159,120 +126,86 @@ def input_fn(is_training, data_dir, batch_size, num_epochs=1): ...@@ -159,120 +126,86 @@ def input_fn(is_training, data_dir, batch_size, num_epochs=1):
return images, labels return images, labels
def resnet_model_fn(features, labels, mode, params): ###############################################################################
"""Our model_fn for ResNet to be used with our Estimator.""" # Running the model
tf.summary.image('images', features, max_outputs=6) ###############################################################################
class ImagenetModel(resnet_model.Model):
network = resnet_model.imagenet_resnet_v2( def __init__(self, resnet_size, data_format=None):
params['resnet_size'], _LABEL_CLASSES, params['data_format']) """These are the parameters that work for Imagenet data.
logits = network( """
inputs=features, is_training=(mode == tf.estimator.ModeKeys.TRAIN))
# For bigger models, we want to use "bottleneck" layers
predictions = { if resnet_size < 50:
'classes': tf.argmax(logits, axis=1), block_fn = resnet_model.building_block
'probabilities': tf.nn.softmax(logits, name='softmax_tensor') final_size = 512
else:
block_fn = resnet_model.bottleneck_block
final_size = 2048
super(ImagenetModel, self).__init__(
resnet_size=resnet_size,
num_classes=_NUM_CLASSES,
num_filters=64,
kernel_size=7,
conv_stride=2,
first_pool_size=3,
first_pool_stride=2,
second_pool_size=7,
second_pool_stride=1,
block_fn=block_fn,
block_sizes=_get_block_sizes(resnet_size),
block_strides=[1, 2, 2, 2],
final_size=final_size,
data_format=data_format)
def _get_block_sizes(resnet_size):
"""The number of block layers used for the Resnet model varies according
to the size of the model. This helper grabs the layer set we want, throwing
an error if a non-standard size has been selected.
"""
choices = {
18: [2, 2, 2, 2],
34: [3, 4, 6, 3],
50: [3, 4, 6, 3],
101: [3, 4, 23, 3],
152: [3, 8, 36, 3],
200: [3, 24, 36, 3]
} }
if mode == tf.estimator.ModeKeys.PREDICT: try:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions) return choices[resnet_size]
except KeyError:
# Calculate loss, which includes softmax cross entropy and L2 regularization. err = ('Could not find layers for selected Resnet size.\n'
cross_entropy = tf.losses.softmax_cross_entropy( 'Size received: {}; sizes allowed: {}.'.format(
logits=logits, onehot_labels=labels) resnet_size, choices.keys()))
raise ValueError(err)
# Create a tensor named cross_entropy for logging purposes.
tf.identity(cross_entropy, name='cross_entropy')
tf.summary.scalar('cross_entropy', cross_entropy)
# Add weight decay to the loss. We exclude the batch norm variables because
# doing so leads to a small improvement in accuracy.
loss = cross_entropy + _WEIGHT_DECAY * tf.add_n(
[tf.nn.l2_loss(v) for v in tf.trainable_variables()
if 'batch_normalization' not in v.name])
if mode == tf.estimator.ModeKeys.TRAIN:
# Scale the learning rate linearly with the batch size. When the batch size
# is 256, the learning rate should be 0.1.
initial_learning_rate = 0.1 * params['batch_size'] / 256
batches_per_epoch = _NUM_IMAGES['train'] / params['batch_size']
global_step = tf.train.get_or_create_global_step()
# Multiply the learning rate by 0.1 at 30, 60, 80, and 90 epochs.
boundaries = [
int(batches_per_epoch * epoch) for epoch in [30, 60, 80, 90]]
values = [
initial_learning_rate * decay for decay in [1, 0.1, 0.01, 1e-3, 1e-4]]
learning_rate = tf.train.piecewise_constant(
tf.cast(global_step, tf.int32), boundaries, values)
# Create a tensor named learning_rate for logging purposes.
tf.identity(learning_rate, name='learning_rate')
tf.summary.scalar('learning_rate', learning_rate)
optimizer = tf.train.MomentumOptimizer(
learning_rate=learning_rate,
momentum=_MOMENTUM)
# Batch norm requires update_ops to be added as a train_op dependency.
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss, global_step)
else:
train_op = None
accuracy = tf.metrics.accuracy(
tf.argmax(labels, axis=1), predictions['classes'])
metrics = {'accuracy': accuracy}
# Create a tensor named train_accuracy for logging purposes. def imagenet_model_fn(features, labels, mode, params):
tf.identity(accuracy[1], name='train_accuracy') """Our model_fn for ResNet to be used with our Estimator."""
tf.summary.scalar('train_accuracy', accuracy[1]) learning_rate_fn = resnet_shared.learning_rate_with_decay(
batch_size=params['batch_size'], batch_denom=256,
num_images=_NUM_IMAGES['train'], boundary_epochs=[30, 60, 80, 90],
decay_rates=[1, 0.1, 0.01, 0.001, 1e-4])
return tf.estimator.EstimatorSpec( return resnet_shared.resnet_model_fn(features, labels, mode, ImagenetModel,
mode=mode, resnet_size=params['resnet_size'],
predictions=predictions, weight_decay=1e-4,
loss=loss, learning_rate_fn=learning_rate_fn,
train_op=train_op, momentum=0.9,
eval_metric_ops=metrics) data_format=params['data_format'],
loss_filter_fn=None)
def main(unused_argv): def main(unused_argv):
# Using the Winograd non-fused algorithms provides a small performance boost. resnet_shared.resnet_main(FLAGS, imagenet_model_fn, input_fn)
os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'
# Set up a RunConfig to only save checkpoints once per training cycle.
run_config = tf.estimator.RunConfig().replace(save_checkpoints_secs=1e9)
resnet_classifier = tf.estimator.Estimator(
model_fn=resnet_model_fn, model_dir=FLAGS.model_dir, config=run_config,
params={
'resnet_size': FLAGS.resnet_size,
'data_format': FLAGS.data_format,
'batch_size': FLAGS.batch_size,
})
for _ in range(FLAGS.train_epochs // FLAGS.epochs_per_eval):
tensors_to_log = {
'learning_rate': 'learning_rate',
'cross_entropy': 'cross_entropy',
'train_accuracy': 'train_accuracy'
}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=100)
print('Starting a training cycle.')
resnet_classifier.train(
input_fn=lambda: input_fn(
True, FLAGS.data_dir, FLAGS.batch_size, FLAGS.epochs_per_eval),
hooks=[logging_hook])
print('Starting to evaluate.')
eval_results = resnet_classifier.evaluate(
input_fn=lambda: input_fn(False, FLAGS.data_dir, FLAGS.batch_size))
print(eval_results)
if __name__ == '__main__': if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO) tf.logging.set_verbosity(tf.logging.INFO)
parser = resnet_shared.ResnetArgParser(
resnet_size_choices=[18, 34, 50, 101, 152, 200])
FLAGS, unparsed = parser.parse_known_args() FLAGS, unparsed = parser.parse_known_args()
tf.app.run(argv=[sys.argv[0]] + unparsed) tf.app.run(argv=[sys.argv[0]] + unparsed)
...@@ -22,7 +22,6 @@ import unittest ...@@ -22,7 +22,6 @@ import unittest
import tensorflow as tf import tensorflow as tf
import imagenet_main import imagenet_main
import resnet_model
tf.logging.set_verbosity(tf.logging.ERROR) tf.logging.set_verbosity(tf.logging.ERROR)
...@@ -35,7 +34,9 @@ class BaseTest(tf.test.TestCase): ...@@ -35,7 +34,9 @@ class BaseTest(tf.test.TestCase):
def tensor_shapes_helper(self, resnet_size, with_gpu=False): def tensor_shapes_helper(self, resnet_size, with_gpu=False):
"""Checks the tensor shapes after each phase of the ResNet model.""" """Checks the tensor shapes after each phase of the ResNet model."""
def reshape(shape): def reshape(shape):
"""Returns the expected dimensions depending on if a GPU is being used.""" """Returns the expected dimensions depending on if a
GPU is being used.
"""
# If a GPU is used for the test, the shape is returned (already in NCHW # If a GPU is used for the test, the shape is returned (already in NCHW
# form). When GPU is not used, the shape is converted to NHWC. # form). When GPU is not used, the shape is converted to NHWC.
if with_gpu: if with_gpu:
...@@ -46,11 +47,11 @@ class BaseTest(tf.test.TestCase): ...@@ -46,11 +47,11 @@ class BaseTest(tf.test.TestCase):
with graph.as_default(), self.test_session( with graph.as_default(), self.test_session(
use_gpu=with_gpu, force_gpu=with_gpu): use_gpu=with_gpu, force_gpu=with_gpu):
model = resnet_model.imagenet_resnet_v2( model = imagenet_main.ImagenetModel(
resnet_size, 456, resnet_size,
data_format='channels_first' if with_gpu else 'channels_last') data_format='channels_first' if with_gpu else 'channels_last')
inputs = tf.random_uniform([1, 224, 224, 3]) inputs = tf.random_uniform([1, 224, 224, 3])
output = model(inputs, is_training=True) output = model(inputs, training=True)
initial_conv = graph.get_tensor_by_name('initial_conv:0') initial_conv = graph.get_tensor_by_name('initial_conv:0')
max_pool = graph.get_tensor_by_name('initial_max_pool:0') max_pool = graph.get_tensor_by_name('initial_max_pool:0')
...@@ -79,8 +80,8 @@ class BaseTest(tf.test.TestCase): ...@@ -79,8 +80,8 @@ class BaseTest(tf.test.TestCase):
self.assertAllEqual(block_layer4.shape, reshape((1, 2048, 7, 7))) self.assertAllEqual(block_layer4.shape, reshape((1, 2048, 7, 7)))
self.assertAllEqual(avg_pool.shape, reshape((1, 2048, 1, 1))) self.assertAllEqual(avg_pool.shape, reshape((1, 2048, 1, 1)))
self.assertAllEqual(dense.shape, (1, 456)) self.assertAllEqual(dense.shape, (1, _LABEL_CLASSES))
self.assertAllEqual(output.shape, (1, 456)) self.assertAllEqual(output.shape, (1, _LABEL_CLASSES))
def test_tensor_shapes_resnet_18(self): def test_tensor_shapes_resnet_18(self):
self.tensor_shapes_helper(18) self.tensor_shapes_helper(18)
...@@ -140,7 +141,7 @@ class BaseTest(tf.test.TestCase): ...@@ -140,7 +141,7 @@ class BaseTest(tf.test.TestCase):
tf.train.create_global_step() tf.train.create_global_step()
features, labels = self.input_fn() features, labels = self.input_fn()
spec = imagenet_main.resnet_model_fn( spec = imagenet_main.imagenet_model_fn(
features, labels, mode, { features, labels, mode, {
'resnet_size': 50, 'resnet_size': 50,
'data_format': 'channels_last', 'data_format': 'channels_last',
......
...@@ -38,14 +38,14 @@ _BATCH_NORM_DECAY = 0.997 ...@@ -38,14 +38,14 @@ _BATCH_NORM_DECAY = 0.997
_BATCH_NORM_EPSILON = 1e-5 _BATCH_NORM_EPSILON = 1e-5
def batch_norm_relu(inputs, is_training, data_format): def batch_norm_relu(inputs, training, data_format):
"""Performs a batch normalization followed by a ReLU.""" """Performs a batch normalization followed by a ReLU."""
# We set fused=True for a significant performance boost. See # We set fused=True for a significant performance boost. See
# https://www.tensorflow.org/performance/performance_guide#common_fused_ops # https://www.tensorflow.org/performance/performance_guide#common_fused_ops
inputs = tf.layers.batch_normalization( inputs = tf.layers.batch_normalization(
inputs=inputs, axis=1 if data_format == 'channels_first' else 3, inputs=inputs, axis=1 if data_format == 'channels_first' else 3,
momentum=_BATCH_NORM_DECAY, epsilon=_BATCH_NORM_EPSILON, center=True, momentum=_BATCH_NORM_DECAY, epsilon=_BATCH_NORM_EPSILON, center=True,
scale=True, training=is_training, fused=True) scale=True, training=training, fused=True)
inputs = tf.nn.relu(inputs) inputs = tf.nn.relu(inputs)
return inputs return inputs
...@@ -91,7 +91,7 @@ def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format): ...@@ -91,7 +91,7 @@ def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format):
data_format=data_format) data_format=data_format)
def building_block(inputs, filters, is_training, projection_shortcut, strides, def building_block(inputs, filters, training, projection_shortcut, strides,
data_format): data_format):
"""Standard building block for residual networks with BN before convolutions. """Standard building block for residual networks with BN before convolutions.
...@@ -99,10 +99,10 @@ def building_block(inputs, filters, is_training, projection_shortcut, strides, ...@@ -99,10 +99,10 @@ def building_block(inputs, filters, is_training, projection_shortcut, strides,
inputs: A tensor of size [batch, channels, height_in, width_in] or inputs: A tensor of size [batch, channels, height_in, width_in] or
[batch, height_in, width_in, channels] depending on data_format. [batch, height_in, width_in, channels] depending on data_format.
filters: The number of filters for the convolutions. filters: The number of filters for the convolutions.
is_training: A Boolean for whether the model is in training or inference training: A Boolean for whether the model is in training or inference
mode. Needed for batch normalization. mode. Needed for batch normalization.
projection_shortcut: The function to use for projection shortcuts (typically projection_shortcut: The function to use for projection shortcuts
a 1x1 convolution when downsampling the input). (typically a 1x1 convolution when downsampling the input).
strides: The block's stride. If greater than 1, this block will ultimately strides: The block's stride. If greater than 1, this block will ultimately
downsample the input. downsample the input.
data_format: The input format ('channels_last' or 'channels_first'). data_format: The input format ('channels_last' or 'channels_first').
...@@ -111,7 +111,7 @@ def building_block(inputs, filters, is_training, projection_shortcut, strides, ...@@ -111,7 +111,7 @@ def building_block(inputs, filters, is_training, projection_shortcut, strides,
The output tensor of the block. The output tensor of the block.
""" """
shortcut = inputs shortcut = inputs
inputs = batch_norm_relu(inputs, is_training, data_format) inputs = batch_norm_relu(inputs, training, data_format)
# The projection shortcut should come after the first batch norm and ReLU # The projection shortcut should come after the first batch norm and ReLU
# since it performs a 1x1 convolution. # since it performs a 1x1 convolution.
...@@ -122,7 +122,7 @@ def building_block(inputs, filters, is_training, projection_shortcut, strides, ...@@ -122,7 +122,7 @@ def building_block(inputs, filters, is_training, projection_shortcut, strides,
inputs=inputs, filters=filters, kernel_size=3, strides=strides, inputs=inputs, filters=filters, kernel_size=3, strides=strides,
data_format=data_format) data_format=data_format)
inputs = batch_norm_relu(inputs, is_training, data_format) inputs = batch_norm_relu(inputs, training, data_format)
inputs = conv2d_fixed_padding( inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=3, strides=1, inputs=inputs, filters=filters, kernel_size=3, strides=1,
data_format=data_format) data_format=data_format)
...@@ -130,19 +130,19 @@ def building_block(inputs, filters, is_training, projection_shortcut, strides, ...@@ -130,19 +130,19 @@ def building_block(inputs, filters, is_training, projection_shortcut, strides,
return inputs + shortcut return inputs + shortcut
def bottleneck_block(inputs, filters, is_training, projection_shortcut, def bottleneck_block(inputs, filters, training, projection_shortcut,
strides, data_format): strides, data_format):
"""Bottleneck block variant for residual networks with BN before convolutions. """Bottleneck block variant for residual networks with BN before convolutions.
Args: Args:
inputs: A tensor of size [batch, channels, height_in, width_in] or inputs: A tensor of size [batch, channels, height_in, width_in] or
[batch, height_in, width_in, channels] depending on data_format. [batch, height_in, width_in, channels] depending on data_format.
filters: The number of filters for the first two convolutions. Note that the filters: The number of filters for the first two convolutions. Note
third and final convolution will use 4 times as many filters. that the third and final convolution will use 4 times as many filters.
is_training: A Boolean for whether the model is in training or inference training: A Boolean for whether the model is in training or inference
mode. Needed for batch normalization. mode. Needed for batch normalization.
projection_shortcut: The function to use for projection shortcuts (typically projection_shortcut: The function to use for projection shortcuts
a 1x1 convolution when downsampling the input). (typically a 1x1 convolution when downsampling the input).
strides: The block's stride. If greater than 1, this block will ultimately strides: The block's stride. If greater than 1, this block will ultimately
downsample the input. downsample the input.
data_format: The input format ('channels_last' or 'channels_first'). data_format: The input format ('channels_last' or 'channels_first').
...@@ -151,7 +151,7 @@ def bottleneck_block(inputs, filters, is_training, projection_shortcut, ...@@ -151,7 +151,7 @@ def bottleneck_block(inputs, filters, is_training, projection_shortcut,
The output tensor of the block. The output tensor of the block.
""" """
shortcut = inputs shortcut = inputs
inputs = batch_norm_relu(inputs, is_training, data_format) inputs = batch_norm_relu(inputs, training, data_format)
# The projection shortcut should come after the first batch norm and ReLU # The projection shortcut should come after the first batch norm and ReLU
# since it performs a 1x1 convolution. # since it performs a 1x1 convolution.
...@@ -162,12 +162,12 @@ def bottleneck_block(inputs, filters, is_training, projection_shortcut, ...@@ -162,12 +162,12 @@ def bottleneck_block(inputs, filters, is_training, projection_shortcut,
inputs=inputs, filters=filters, kernel_size=1, strides=1, inputs=inputs, filters=filters, kernel_size=1, strides=1,
data_format=data_format) data_format=data_format)
inputs = batch_norm_relu(inputs, is_training, data_format) inputs = batch_norm_relu(inputs, training, data_format)
inputs = conv2d_fixed_padding( inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=3, strides=strides, inputs=inputs, filters=filters, kernel_size=3, strides=strides,
data_format=data_format) data_format=data_format)
inputs = batch_norm_relu(inputs, is_training, data_format) inputs = batch_norm_relu(inputs, training, data_format)
inputs = conv2d_fixed_padding( inputs = conv2d_fixed_padding(
inputs=inputs, filters=4 * filters, kernel_size=1, strides=1, inputs=inputs, filters=4 * filters, kernel_size=1, strides=1,
data_format=data_format) data_format=data_format)
...@@ -175,7 +175,7 @@ def bottleneck_block(inputs, filters, is_training, projection_shortcut, ...@@ -175,7 +175,7 @@ def bottleneck_block(inputs, filters, is_training, projection_shortcut,
return inputs + shortcut return inputs + shortcut
def block_layer(inputs, filters, block_fn, blocks, strides, is_training, name, def block_layer(inputs, filters, block_fn, blocks, strides, training, name,
data_format): data_format):
"""Creates one layer of blocks for the ResNet model. """Creates one layer of blocks for the ResNet model.
...@@ -188,7 +188,7 @@ def block_layer(inputs, filters, block_fn, blocks, strides, is_training, name, ...@@ -188,7 +188,7 @@ def block_layer(inputs, filters, block_fn, blocks, strides, is_training, name,
blocks: The number of blocks contained in the layer. blocks: The number of blocks contained in the layer.
strides: The stride to use for the first convolution of the layer. If strides: The stride to use for the first convolution of the layer. If
greater than 1, this layer will ultimately downsample the input. greater than 1, this layer will ultimately downsample the input.
is_training: Either True or False, whether we are currently training the training: Either True or False, whether we are currently training the
model. Needed for batch norm. model. Needed for batch norm.
name: A string name for the tensor output of the block layer. name: A string name for the tensor output of the block layer.
data_format: The input format ('channels_last' or 'channels_first'). data_format: The input format ('channels_last' or 'channels_first').
...@@ -205,162 +205,116 @@ def block_layer(inputs, filters, block_fn, blocks, strides, is_training, name, ...@@ -205,162 +205,116 @@ def block_layer(inputs, filters, block_fn, blocks, strides, is_training, name,
data_format=data_format) data_format=data_format)
# Only the first block per block_layer uses projection_shortcut and strides # Only the first block per block_layer uses projection_shortcut and strides
inputs = block_fn(inputs, filters, is_training, projection_shortcut, strides, inputs = block_fn(inputs, filters, training, projection_shortcut, strides,
data_format) data_format)
for _ in range(1, blocks): for _ in range(1, blocks):
inputs = block_fn(inputs, filters, is_training, None, 1, data_format) inputs = block_fn(inputs, filters, training, None, 1, data_format)
return tf.identity(inputs, name) return tf.identity(inputs, name)
def cifar10_resnet_v2_generator(resnet_size, num_classes, data_format=None): class Model(object):
"""Generator for CIFAR-10 ResNet v2 models. """Base class for building the Resnet v2 Model.
Args:
resnet_size: A single integer for the size of the ResNet model.
num_classes: The number of possible classes for image classification.
data_format: The input format ('channels_last', 'channels_first', or None).
If set to None, the format is dependent on whether a GPU is available.
Returns:
The model function that takes in `inputs` and `is_training` and
returns the output tensor of the ResNet model.
Raises:
ValueError: If `resnet_size` is invalid.
""" """
if resnet_size % 6 != 2:
raise ValueError('resnet_size must be 6n + 2:', resnet_size)
num_blocks = (resnet_size - 2) // 6
if data_format is None: def __init__(self, resnet_size, num_classes, num_filters, kernel_size,
data_format = ( conv_stride, first_pool_size, first_pool_stride,
'channels_first' if tf.test.is_built_with_cuda() else 'channels_last') second_pool_size, second_pool_stride, block_fn, block_sizes,
block_strides, final_size, data_format=None):
def model(inputs, is_training): """Creates a model for classifying an image.
"""Constructs the ResNet model given the inputs."""
if data_format == 'channels_first': Args:
resnet_size: A single integer for the size of the ResNet model.
num_classes: The number of classes used as labels.
num_filters: The number of filters to use for the first block layer
of the model. This number is then doubled for each subsequent block
layer.
kernel_size: The kernel size to use for convolution.
conv_stride: stride size for the initial convolutional layer
first_pool_size: Pool size to be used for the first pooling layer.
If none, the first pooling layer is skipped.
first_pool_stride: stride size for the first pooling layer. Not used
if first_pool_size is None.
second_pool_size: Pool size to be used for the second pooling layer.
second_pool_stride: stride size for the final pooling layer
block_fn: Which block layer function should be used? Pass in one of
the two functions defined above: building_block or bottleneck_block
block_sizes: A list containing n values, where n is the number of sets of
block layers desired. Each value should be the number of blocks in the
i-th set.
block_strides: List of integers representing the desired stride size for
each of the sets of block layers. Should be same length as block_sizes.
final_size: The expected size of the model after the second pooling.
data_format: Input format ('channels_last', 'channels_first', or None).
If set to None, the format is dependent on whether a GPU is available.
"""
self.resnet_size = resnet_size
if not data_format:
data_format = (
'channels_first' if tf.test.is_built_with_cuda() else 'channels_last')
self.data_format = data_format
self.num_classes = num_classes
self.num_filters = num_filters
self.kernel_size = kernel_size
self.conv_stride = conv_stride
self.first_pool_size = first_pool_size
self.first_pool_stride = first_pool_stride
self.second_pool_size = second_pool_size
self.second_pool_stride = second_pool_stride
self.block_fn = block_fn
self.block_sizes = block_sizes
self.block_strides = block_strides
self.final_size = final_size
def __call__(self, inputs, training):
"""Add operations to classify a batch of input images.
Args:
inputs: A Tensor representing a batch of input images.
training: A boolean. Set to True to add operations required only when
training the classifier.
Returns:
A logits Tensor with shape [<batch_size>, self.num_classes].
"""
if self.data_format == 'channels_first':
# Convert the inputs from channels_last (NHWC) to channels_first (NCHW). # Convert the inputs from channels_last (NHWC) to channels_first (NCHW).
# This provides a large performance boost on GPU. See # This provides a large performance boost on GPU. See
# https://www.tensorflow.org/performance/performance_guide#data_formats # https://www.tensorflow.org/performance/performance_guide#data_formats
inputs = tf.transpose(inputs, [0, 3, 1, 2]) inputs = tf.transpose(inputs, [0, 3, 1, 2])
inputs = conv2d_fixed_padding( inputs = conv2d_fixed_padding(
inputs=inputs, filters=16, kernel_size=3, strides=1, inputs=inputs, filters=self.num_filters, kernel_size=self.kernel_size,
data_format=data_format) strides=self.conv_stride, data_format=self.data_format)
inputs = tf.identity(inputs, 'initial_conv') inputs = tf.identity(inputs, 'initial_conv')
inputs = block_layer( if self.first_pool_size:
inputs=inputs, filters=16, block_fn=building_block, blocks=num_blocks, inputs = tf.layers.max_pooling2d(
strides=1, is_training=is_training, name='block_layer1', inputs=inputs, pool_size=self.first_pool_size,
data_format=data_format) strides=self.first_pool_stride, padding='SAME',
inputs = block_layer( data_format=self.data_format)
inputs=inputs, filters=32, block_fn=building_block, blocks=num_blocks, inputs = tf.identity(inputs, 'initial_max_pool')
strides=2, is_training=is_training, name='block_layer2',
data_format=data_format) for i, num_blocks in enumerate(self.block_sizes):
inputs = block_layer( num_filters = self.num_filters * (2**i)
inputs=inputs, filters=64, block_fn=building_block, blocks=num_blocks, inputs = block_layer(
strides=2, is_training=is_training, name='block_layer3', inputs=inputs, filters=num_filters, block_fn=self.block_fn,
data_format=data_format) blocks=num_blocks, strides=self.block_strides[i],
training=training, name='block_layer{}'.format(i + 1),
inputs = batch_norm_relu(inputs, is_training, data_format) data_format=self.data_format)
inputs = batch_norm_relu(inputs, training, self.data_format)
inputs = tf.layers.average_pooling2d( inputs = tf.layers.average_pooling2d(
inputs=inputs, pool_size=8, strides=1, padding='VALID', inputs=inputs, pool_size=self.second_pool_size,
data_format=data_format) strides=self.second_pool_stride, padding='VALID',
data_format=self.data_format)
inputs = tf.identity(inputs, 'final_avg_pool') inputs = tf.identity(inputs, 'final_avg_pool')
inputs = tf.reshape(inputs, [-1, 64])
inputs = tf.layers.dense(inputs=inputs, units=num_classes)
inputs = tf.identity(inputs, 'final_dense')
return inputs
return model
def imagenet_resnet_v2_generator(block_fn, layers, num_classes,
data_format=None):
"""Generator for ImageNet ResNet v2 models.
Args:
block_fn: The block to use within the model, either `building_block` or
`bottleneck_block`.
layers: A length-4 array denoting the number of blocks to include in each
layer. Each layer consists of blocks that take inputs of the same size.
num_classes: The number of possible classes for image classification.
data_format: The input format ('channels_last', 'channels_first', or None).
If set to None, the format is dependent on whether a GPU is available.
Returns:
The model function that takes in `inputs` and `is_training` and
returns the output tensor of the ResNet model.
"""
if data_format is None:
data_format = (
'channels_first' if tf.test.is_built_with_cuda() else 'channels_last')
def model(inputs, is_training):
"""Constructs the ResNet model given the inputs."""
if data_format == 'channels_first':
# Convert the inputs from channels_last (NHWC) to channels_first (NCHW).
# This provides a large performance boost on GPU. See
# https://www.tensorflow.org/performance/performance_guide#data_formats
inputs = tf.transpose(inputs, [0, 3, 1, 2])
inputs = conv2d_fixed_padding(
inputs=inputs, filters=64, kernel_size=7, strides=2,
data_format=data_format)
inputs = tf.identity(inputs, 'initial_conv')
inputs = tf.layers.max_pooling2d(
inputs=inputs, pool_size=3, strides=2, padding='SAME',
data_format=data_format)
inputs = tf.identity(inputs, 'initial_max_pool')
inputs = block_layer(
inputs=inputs, filters=64, block_fn=block_fn, blocks=layers[0],
strides=1, is_training=is_training, name='block_layer1',
data_format=data_format)
inputs = block_layer(
inputs=inputs, filters=128, block_fn=block_fn, blocks=layers[1],
strides=2, is_training=is_training, name='block_layer2',
data_format=data_format)
inputs = block_layer(
inputs=inputs, filters=256, block_fn=block_fn, blocks=layers[2],
strides=2, is_training=is_training, name='block_layer3',
data_format=data_format)
inputs = block_layer(
inputs=inputs, filters=512, block_fn=block_fn, blocks=layers[3],
strides=2, is_training=is_training, name='block_layer4',
data_format=data_format)
inputs = batch_norm_relu(inputs, is_training, data_format) inputs = tf.reshape(inputs, [-1, self.final_size])
inputs = tf.layers.average_pooling2d( inputs = tf.layers.dense(inputs=inputs, units=self.num_classes)
inputs=inputs, pool_size=7, strides=1, padding='VALID',
data_format=data_format)
inputs = tf.identity(inputs, 'final_avg_pool')
inputs = tf.reshape(inputs,
[-1, 512 if block_fn is building_block else 2048])
inputs = tf.layers.dense(inputs=inputs, units=num_classes)
inputs = tf.identity(inputs, 'final_dense') inputs = tf.identity(inputs, 'final_dense')
return inputs return inputs
return model
def imagenet_resnet_v2(resnet_size, num_classes, data_format=None):
"""Returns the ResNet model for a given size and number of output classes."""
model_params = {
18: {'block': building_block, 'layers': [2, 2, 2, 2]},
34: {'block': building_block, 'layers': [3, 4, 6, 3]},
50: {'block': bottleneck_block, 'layers': [3, 4, 6, 3]},
101: {'block': bottleneck_block, 'layers': [3, 4, 23, 3]},
152: {'block': bottleneck_block, 'layers': [3, 8, 36, 3]},
200: {'block': bottleneck_block, 'layers': [3, 24, 36, 3]}
}
if resnet_size not in model_params:
raise ValueError('Not a valid resnet_size:', resnet_size)
params = model_params[resnet_size]
return imagenet_resnet_v2_generator(
params['block'], params['layers'], num_classes, data_format)
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for running Resnet that are shared across datasets."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import tensorflow as tf
def learning_rate_with_decay(
batch_size, batch_denom, num_images, boundary_epochs, decay_rates):
"""Get a learning rate that decays step-wise as training progresses.
Args:
batch_size: the number of examples processed in each training batch.
batch_denom: this value will be used to scale the base learning rate.
`0.1 * batch size` is divided by this number, such that when
batch_denom == batch_size, the initial learning rate will be 0.1.
num_images: total number of images that will be used for training.
boundary_epochs: list of ints representing the epochs at which we
decay the learning rate.
decay_rates: list of floats representing the decay rates to be used
for scaling the learning rate. Should be the same length as
boundary_epochs.
Returns:
Returns a function that takes a single argument - the number of batches
trained so far (global_step)- and returns the learning rate to be used
for training the next batch.
"""
initial_learning_rate = 0.1 * batch_size / batch_denom
batches_per_epoch = num_images / batch_size
# Multiply the learning rate by 0.1 at 100, 150, and 200 epochs.
boundaries = [int(batches_per_epoch * epoch) for epoch in boundary_epochs]
vals = [initial_learning_rate * decay for decay in decay_rates]
def learning_rate_fn(global_step):
global_step = tf.cast(global_step, tf.int32)
return tf.train.piecewise_constant(global_step, boundaries, vals)
return learning_rate_fn
def resnet_model_fn(features, labels, mode, model_class,
resnet_size, weight_decay, learning_rate_fn, momentum,
data_format, loss_filter_fn=None):
"""Shared functionality for different resnet model_fns.
Initializes the ResnetModel representing the model layers
and uses that model to build the necessary EstimatorSpecs for
the `mode` in question. For training, this means building losses,
the optimizer, and the train op that get passed into the EstimatorSpec.
For evaluation and prediction, the EstimatorSpec is returned without
a train op, but with the necessary parameters for the given mode.
Args:
features: tensor representing input images
labels: tensor representing class labels for all input images
mode: current estimator mode; should be one of
`tf.estimator.ModeKeys.TRAIN`, `EVALUATE`, `PREDICT`
model_class: a class representing a TensorFlow model that has a __call__
function. We assume here that this is a subclass of ResnetModel.
resnet_size: A single integer for the size of the ResNet model.
weight_decay: weight decay loss rate used to regularize learned variables.
learning_rate_fn: function that returns the current learning rate given
the current global_step
momentum: momentum term used for optimization
data_format: Input format ('channels_last', 'channels_first', or None).
If set to None, the format is dependent on whether a GPU is available.
loss_filter_fn: function that takes a string variable name and returns
True if the var should be included in loss calculation, and False
otherwise. If None, batch_normalization variables will be excluded
from the loss.
Returns:
EstimatorSpec parameterized according to the input params and the
current mode.
"""
# Generate a summary node for the images
tf.summary.image('images', features, max_outputs=6)
model = model_class(resnet_size, data_format)
logits = model(features, mode == tf.estimator.ModeKeys.TRAIN)
predictions = {
'classes': tf.argmax(logits, axis=1),
'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Calculate loss, which includes softmax cross entropy and L2 regularization.
cross_entropy = tf.losses.softmax_cross_entropy(
logits=logits, onehot_labels=labels)
# Create a tensor named cross_entropy for logging purposes.
tf.identity(cross_entropy, name='cross_entropy')
tf.summary.scalar('cross_entropy', cross_entropy)
# If no loss_filter_fn is passed, assume we want the default behavior,
# which is that batch_normalization variables are excluded from loss.
if not loss_filter_fn:
def loss_filter_fn(name):
return 'batch_normalization' not in name
# Add weight decay to the loss.
loss = cross_entropy + weight_decay * tf.add_n(
[tf.nn.l2_loss(v) for v in tf.trainable_variables()
if loss_filter_fn(v.name)])
if mode == tf.estimator.ModeKeys.TRAIN:
global_step = tf.train.get_or_create_global_step()
learning_rate = learning_rate_fn(global_step)
# Create a tensor named learning_rate for logging purposes
tf.identity(learning_rate, name='learning_rate')
tf.summary.scalar('learning_rate', learning_rate)
optimizer = tf.train.MomentumOptimizer(
learning_rate=learning_rate,
momentum=momentum)
# Batch norm requires update ops to be added as a dependency to train_op
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss, global_step)
else:
train_op = None
accuracy = tf.metrics.accuracy(
tf.argmax(labels, axis=1), predictions['classes'])
metrics = {'accuracy': accuracy}
# Create a tensor named train_accuracy for logging purposes
tf.identity(accuracy[1], name='train_accuracy')
tf.summary.scalar('train_accuracy', accuracy[1])
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op,
eval_metric_ops=metrics)
def resnet_main(flags, model_function, input_function):
# Using the Winograd non-fused algorithms provides a small performance boost.
os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'
# Set up a RunConfig to only save checkpoints once per training cycle.
run_config = tf.estimator.RunConfig().replace(save_checkpoints_secs=1e9)
classifier = tf.estimator.Estimator(
model_fn=model_function, model_dir=flags.model_dir, config=run_config,
params={
'resnet_size': flags.resnet_size,
'data_format': flags.data_format,
'batch_size': flags.batch_size,
})
for _ in range(flags.train_epochs // flags.epochs_per_eval):
tensors_to_log = {
'learning_rate': 'learning_rate',
'cross_entropy': 'cross_entropy',
'train_accuracy': 'train_accuracy'
}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=100)
print('Starting a training cycle.')
classifier.train(
input_fn=lambda: input_function(
True, flags.data_dir, flags.batch_size, flags.epochs_per_eval),
hooks=[logging_hook])
print('Starting to evaluate.')
# Evaluate the model and print results
eval_results = classifier.evaluate(input_fn=lambda: input_function(
False, flags.data_dir, flags.batch_size))
print(eval_results)
class ResnetArgParser(argparse.ArgumentParser):
"""Arguments for configuring and running a Resnet Model.
"""
def __init__(self, resnet_size_choices=None):
super(ResnetArgParser, self).__init__()
self.add_argument(
'--data_dir', type=str, default='/tmp/resnet_data',
help='The directory where the input data is stored.')
self.add_argument(
'--model_dir', type=str, default='/tmp/resnet_model',
help='The directory where the model will be stored.')
self.add_argument(
'--resnet_size', type=int, default=50,
choices=resnet_size_choices,
help='The size of the ResNet model to use.')
self.add_argument(
'--train_epochs', type=int, default=100,
help='The number of epochs to use for training.')
self.add_argument(
'--epochs_per_eval', type=int, default=1,
help='The number of training epochs to run between evaluations.')
self.add_argument(
'--batch_size', type=int, default=32,
help='Batch size for training and evaluation.')
self.add_argument(
'--data_format', type=str, default=None,
choices=['channels_first', 'channels_last'],
help='A flag to override the data format used in the model. '
'channels_first provides a performance boost on GPU but '
'is not always compatible with CPU. If left unspecified, '
'the data format will be chosen automatically based on '
'whether TensorFlow was built for CPU or GPU.')
<font size=4><b>Deep Learning with Differential Privacy</b></font> <font size=4><b>Deep Learning with Differential Privacy</b></font>
Open Sourced By: Xin Pan (xpan@google.com, github: panyx0718) Open Sourced By: Xin Pan
### Introduction for [dp_sgd/README.md](dp_sgd/README.md) ### Introduction for [dp_sgd/README.md](dp_sgd/README.md)
......
...@@ -93,6 +93,7 @@ import sys ...@@ -93,6 +93,7 @@ import sys
import threading import threading
import numpy as np import numpy as np
import six
import tensorflow as tf import tensorflow as tf
tf.app.flags.DEFINE_string('train_directory', '/tmp/', tf.app.flags.DEFINE_string('train_directory', '/tmp/',
......
...@@ -3,7 +3,7 @@ ...@@ -3,7 +3,7 @@
<b>Authors:</b> <b>Authors:</b>
Oriol Vinyals (vinyals@google.com, github: OriolVinyals), Oriol Vinyals (vinyals@google.com, github: OriolVinyals),
Xin Pan (xpan@google.com, github: panyx0718) Xin Pan
<b>Paper Authors:</b> <b>Paper Authors:</b>
......
...@@ -8,7 +8,7 @@ This is an implementation based on my understanding, with small ...@@ -8,7 +8,7 @@ This is an implementation based on my understanding, with small
variations. It doesn't necessarily represents the paper published variations. It doesn't necessarily represents the paper published
by the original authors. by the original authors.
Authors: Xin Pan (Github: panyx0718), Anelia Angelova Authors: Xin Pan, Anelia Angelova
<b>Results:</b> <b>Results:</b>
......
<font size=4><b>Reproduced ResNet on CIFAR-10 and CIFAR-100 dataset.</b></font> <font size=4><b>Reproduced ResNet on CIFAR-10 and CIFAR-100 dataset.</b></font>
contact: panyx0718 (xpan@google.com) Xin Pan
<b>Dataset:</b> <b>Dataset:</b>
......
...@@ -2,7 +2,7 @@ Sequence-to-Sequence with Attention Model for Text Summarization. ...@@ -2,7 +2,7 @@ Sequence-to-Sequence with Attention Model for Text Summarization.
Authors: Authors:
Xin Pan (xpan@google.com, github:panyx0718), Xin Pan
Peter Liu (peterjliu@google.com, github:peterjliu) Peter Liu (peterjliu@google.com, github:peterjliu)
<b>Introduction</b> <b>Introduction</b>
......
...@@ -204,7 +204,7 @@ def inference(images): ...@@ -204,7 +204,7 @@ def inference(images):
kernel = _variable_with_weight_decay('weights', kernel = _variable_with_weight_decay('weights',
shape=[5, 5, 3, 64], shape=[5, 5, 3, 64],
stddev=5e-2, stddev=5e-2,
wd=0.0) wd=None)
conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME') conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME')
biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0)) biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0))
pre_activation = tf.nn.bias_add(conv, biases) pre_activation = tf.nn.bias_add(conv, biases)
...@@ -223,7 +223,7 @@ def inference(images): ...@@ -223,7 +223,7 @@ def inference(images):
kernel = _variable_with_weight_decay('weights', kernel = _variable_with_weight_decay('weights',
shape=[5, 5, 64, 64], shape=[5, 5, 64, 64],
stddev=5e-2, stddev=5e-2,
wd=0.0) wd=None)
conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME') conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME')
biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1)) biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1))
pre_activation = tf.nn.bias_add(conv, biases) pre_activation = tf.nn.bias_add(conv, biases)
...@@ -262,7 +262,7 @@ def inference(images): ...@@ -262,7 +262,7 @@ def inference(images):
# and performs the softmax internally for efficiency. # and performs the softmax internally for efficiency.
with tf.variable_scope('softmax_linear') as scope: with tf.variable_scope('softmax_linear') as scope:
weights = _variable_with_weight_decay('weights', [192, NUM_CLASSES], weights = _variable_with_weight_decay('weights', [192, NUM_CLASSES],
stddev=1/192.0, wd=0.0) stddev=1/192.0, wd=None)
biases = _variable_on_cpu('biases', [NUM_CLASSES], biases = _variable_on_cpu('biases', [NUM_CLASSES],
tf.constant_initializer(0.0)) tf.constant_initializer(0.0))
softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name) softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment