Commit 6d6a78a2 authored by Allen Wang's avatar Allen Wang Committed by A. Unique TensorFlower
Browse files

Create XLNet pretrain data loader.

PiperOrigin-RevId: 342283301
parent 42f8e96e
This diff is collapsed.
...@@ -24,19 +24,21 @@ import tensorflow as tf ...@@ -24,19 +24,21 @@ import tensorflow as tf
from official.nlp.data import pretrain_dataloader from official.nlp.data import pretrain_dataloader
def _create_fake_dataset(output_path, def create_int_feature(values):
seq_length, f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
max_predictions_per_seq, return f
use_position_id,
use_next_sentence_label,
use_v2_feature_names=False): def _create_fake_bert_dataset(
output_path,
seq_length,
max_predictions_per_seq,
use_position_id,
use_next_sentence_label,
use_v2_feature_names=False):
"""Creates a fake dataset.""" """Creates a fake dataset."""
writer = tf.io.TFRecordWriter(output_path) writer = tf.io.TFRecordWriter(output_path)
def create_int_feature(values):
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return f
def create_float_feature(values): def create_float_feature(values):
f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values))) f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
return f return f
...@@ -70,6 +72,34 @@ def _create_fake_dataset(output_path, ...@@ -70,6 +72,34 @@ def _create_fake_dataset(output_path,
writer.close() writer.close()
def _create_fake_xlnet_dataset(
output_path, seq_length, max_predictions_per_seq):
"""Creates a fake dataset."""
writer = tf.io.TFRecordWriter(output_path)
for _ in range(100):
features = {}
input_ids = np.random.randint(100, size=(seq_length))
num_boundary_indices = np.random.randint(1, seq_length)
if max_predictions_per_seq is not None:
input_mask = np.zeros_like(input_ids)
input_mask[:max_predictions_per_seq] = 1
np.random.shuffle(input_mask)
else:
input_mask = np.ones_like(input_ids)
features["input_mask"] = create_int_feature(input_mask)
features["input_word_ids"] = create_int_feature(input_ids)
features["input_type_ids"] = create_int_feature(np.ones_like(input_ids))
features["boundary_indices"] = create_int_feature(
sorted(np.random.randint(seq_length, size=(num_boundary_indices))))
features["target"] = create_int_feature(input_ids + 1)
features["label"] = create_int_feature([1])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
writer.close()
class BertPretrainDataTest(tf.test.TestCase, parameterized.TestCase): class BertPretrainDataTest(tf.test.TestCase, parameterized.TestCase):
@parameterized.parameters(itertools.product( @parameterized.parameters(itertools.product(
...@@ -80,7 +110,7 @@ class BertPretrainDataTest(tf.test.TestCase, parameterized.TestCase): ...@@ -80,7 +110,7 @@ class BertPretrainDataTest(tf.test.TestCase, parameterized.TestCase):
train_data_path = os.path.join(self.get_temp_dir(), "train.tf_record") train_data_path = os.path.join(self.get_temp_dir(), "train.tf_record")
seq_length = 128 seq_length = 128
max_predictions_per_seq = 20 max_predictions_per_seq = 20
_create_fake_dataset( _create_fake_bert_dataset(
train_data_path, train_data_path,
seq_length, seq_length,
max_predictions_per_seq, max_predictions_per_seq,
...@@ -114,7 +144,7 @@ class BertPretrainDataTest(tf.test.TestCase, parameterized.TestCase): ...@@ -114,7 +144,7 @@ class BertPretrainDataTest(tf.test.TestCase, parameterized.TestCase):
train_data_path = os.path.join(self.get_temp_dir(), "train.tf_record") train_data_path = os.path.join(self.get_temp_dir(), "train.tf_record")
seq_length = 128 seq_length = 128
max_predictions_per_seq = 20 max_predictions_per_seq = 20
_create_fake_dataset( _create_fake_bert_dataset(
train_data_path, train_data_path,
seq_length, seq_length,
max_predictions_per_seq, max_predictions_per_seq,
...@@ -141,5 +171,74 @@ class BertPretrainDataTest(tf.test.TestCase, parameterized.TestCase): ...@@ -141,5 +171,74 @@ class BertPretrainDataTest(tf.test.TestCase, parameterized.TestCase):
self.assertIn("masked_lm_weights", features) self.assertIn("masked_lm_weights", features)
class XLNetPretrainDataTest(parameterized.TestCase, tf.test.TestCase):
@parameterized.parameters(itertools.product(
("fixed", "single_token", "whole_word", "token_span"),
(0, 64),
(20, None),
))
def test_load_data(
self, sample_strategy, reuse_length, max_predictions_per_seq):
train_data_path = os.path.join(self.get_temp_dir(), "train.tf_record")
seq_length = 128
batch_size = 5
_create_fake_xlnet_dataset(
train_data_path, seq_length, max_predictions_per_seq)
data_config = pretrain_dataloader.XLNetPretrainDataConfig(
input_path=train_data_path,
max_predictions_per_seq=max_predictions_per_seq,
seq_length=seq_length,
global_batch_size=batch_size,
is_training=True,
reuse_length=reuse_length,
sample_strategy=sample_strategy,
min_num_tokens=1,
max_num_tokens=2,
permutation_size=seq_length // 2,
leak_ratio=0.1)
if (max_predictions_per_seq is None and sample_strategy != "fixed"):
with self.assertRaisesWithRegexpMatch(
ValueError, "`max_predictions_per_seq` must be set"):
dataset = pretrain_dataloader.XLNetPretrainDataLoader(
data_config).load()
features = next(iter(dataset))
else:
dataset = pretrain_dataloader.XLNetPretrainDataLoader(data_config).load()
features = next(iter(dataset))
self.assertIn("input_word_ids", features)
self.assertIn("input_type_ids", features)
self.assertIn("permutation_mask", features)
self.assertIn("masked_tokens", features)
self.assertIn("target", features)
self.assertIn("target_mask", features)
self.assertAllClose(features["input_word_ids"].shape,
(batch_size, seq_length))
self.assertAllClose(features["input_type_ids"].shape,
(batch_size, seq_length))
self.assertAllClose(features["permutation_mask"].shape,
(batch_size, seq_length, seq_length))
self.assertAllClose(features["masked_tokens"].shape,
(batch_size, seq_length,))
if max_predictions_per_seq is not None:
self.assertIn("target_mapping", features)
self.assertAllClose(features["target_mapping"].shape,
(batch_size, max_predictions_per_seq, seq_length))
self.assertAllClose(features["target_mask"].shape,
(batch_size, max_predictions_per_seq))
self.assertAllClose(features["target"].shape,
(batch_size, max_predictions_per_seq))
else:
self.assertAllClose(features["target_mask"].shape,
(batch_size, seq_length))
self.assertAllClose(features["target"].shape,
(batch_size, seq_length))
if __name__ == "__main__": if __name__ == "__main__":
tf.test.main() tf.test.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment