"...pipelines/animatediff/pipeline_animatediff_controlnet.py" did not exist on "81780882b8cfb7628a2e09dbaae566ead5d760e8"
Unverified Commit 6b9d5fba authored by Toby Boyd's avatar Toby Boyd Committed by GitHub
Browse files

Merge branch 'master' into patch-1

parents 5fd687c5 5fa2a4e6
......@@ -19,6 +19,7 @@ from __future__ import division
from __future__ import print_function
import tensorflow as tf
from six.moves import xrange
import networks
......
......@@ -24,6 +24,7 @@ from __future__ import print_function
import numpy as np
from six.moves import xrange
import tensorflow as tf
ds = tf.contrib.distributions
......
......@@ -22,6 +22,7 @@ import os
import numpy as np
import scipy.misc
from six.moves import xrange
import tensorflow as tf
from mnist import data_provider
......
......@@ -119,8 +119,8 @@ First ensure that you have installed the following required packages:
* **NumPy** ([instructions](http://www.scipy.org/install.html))
* **Natural Language Toolkit (NLTK)**:
* First install NLTK ([instructions](http://www.nltk.org/install.html))
* Then install the NLTK data ([instructions](http://www.nltk.org/data.html))
* Then install the NLTK data package "punkt" ([instructions](http://www.nltk.org/data.html))
* **Unzip**
### Prepare the Training Data
To train the model you will need to provide training data in native TFRecord
......@@ -145,7 +145,7 @@ available space for storing the downloaded and processed data.
MSCOCO_DIR="${HOME}/im2txt/data/mscoco"
# Build the preprocessing script.
cd tensorflow-models/im2txt
cd research/im2txt
bazel build //im2txt:download_and_preprocess_mscoco
# Run the preprocessing script.
......@@ -212,7 +212,7 @@ INCEPTION_CHECKPOINT="${HOME}/im2txt/data/inception_v3.ckpt"
MODEL_DIR="${HOME}/im2txt/model"
# Build the model.
cd tensorflow-models/im2txt
cd research/im2txt
bazel build -c opt //im2txt/...
# Run the training script.
......@@ -306,7 +306,7 @@ VOCAB_FILE="${HOME}/im2txt/data/mscoco/word_counts.txt"
IMAGE_FILE="${HOME}/im2txt/data/mscoco/raw-data/val2014/COCO_val2014_000000224477.jpg"
# Build the inference binary.
cd tensorflow-models/im2txt
cd research/im2txt
bazel build -c opt //im2txt:run_inference
# Ignore GPU devices (only necessary if your GPU is currently memory
......
......@@ -97,6 +97,7 @@ import threading
import nltk.tokenize
import numpy as np
from six.moves import xrange
import tensorflow as tf
tf.flags.DEFINE_string("train_image_dir", "/tmp/train2014/",
......
......@@ -76,7 +76,7 @@ def evaluate_model(sess, model, global_step, summary_writer, summary_op):
start_time = time.time()
sum_losses = 0.
sum_weights = 0.
for i in xrange(num_eval_batches):
for i in range(num_eval_batches):
cross_entropy_losses, weights = sess.run([
model.target_cross_entropy_losses,
model.target_cross_entropy_loss_weights
......@@ -143,7 +143,7 @@ def run_once(model, saver, summary_writer, summary_op):
global_step=global_step,
summary_writer=summary_writer,
summary_op=summary_op)
except Exception, e: # pylint: disable=broad-except
except Exception as e: # pylint: disable=broad-except
tf.logging.error("Evaluation failed.")
coord.request_stop(e)
......
......@@ -70,7 +70,7 @@ def main(_):
generator = caption_generator.CaptionGenerator(model, vocab)
for filename in filenames:
with tf.gfile.GFile(filename, "r") as f:
with tf.gfile.GFile(filename, "rb") as f:
image = f.read()
captions = generator.beam_search(sess, image)
print("Captions for image %s:" % os.path.basename(filename))
......
......@@ -21,6 +21,7 @@ import sys
import time
import numpy as np
from six.moves import xrange
import tensorflow as tf
from learned_optimizer.optimizer import trainable_optimizer
......
......@@ -29,6 +29,7 @@ import numpy as np
from scipy.misc import imresize
from scipy.misc import imrotate
from scipy.ndimage import imread
from six.moves import xrange
import tensorflow as tf
......
......@@ -23,6 +23,7 @@ published as a conference paper at ICLR 2017.
"""
import numpy as np
from six.moves import xrange
import tensorflow as tf
......
......@@ -26,6 +26,7 @@ import os
import random
import numpy as np
from six.moves import xrange
import tensorflow as tf
import data_utils
......
......@@ -18,6 +18,7 @@ from __future__ import print_function
import h5py
import numpy as np
import os
from six.moves import xrange
import tensorflow as tf
from utils import write_datasets
......@@ -47,12 +48,12 @@ flags.DEFINE_float("max_firing_rate", 30.0,
flags.DEFINE_float("u_std", 0.25,
"Std dev of input to integration to bound model")
flags.DEFINE_string("checkpoint_path", "SAMPLE_CHECKPOINT",
"""Path to directory with checkpoints of model
"""Path to directory with checkpoints of model
trained on integration to bound task. Currently this
is a placeholder which tells the code to grab the
checkpoint that is provided with the code
(in /trained_itb/..). If you have your own checkpoint
you would like to restore, you would point it to
checkpoint that is provided with the code
(in /trained_itb/..). If you have your own checkpoint
you would like to restore, you would point it to
that path.""")
FLAGS = flags.FLAGS
......
......@@ -18,6 +18,7 @@ from __future__ import print_function
import os
import h5py
import numpy as np
from six.moves import xrange
from synthetic_data_utils import generate_data, generate_rnn
from synthetic_data_utils import get_train_n_valid_inds
......
......@@ -21,6 +21,7 @@ import sys
import time
import numpy as np
from six.moves import xrange
import tensorflow as tf
import program_utils
......
......@@ -17,6 +17,7 @@
import time
import numpy as np
from six.moves import xrange
import tensorflow as tf
from tensorflow.python.framework import function
......@@ -500,8 +501,10 @@ class NeuralGPU(object):
return tf.reduce_sum(encoder_outputs * tf.expand_dims(mask, 2), 1)
with tf.variable_scope("decoder"):
def decoder_loop_fn((state, prev_cell_out, _), (cell_inp, cur_tgt)):
def decoder_loop_fn(state__prev_cell_out__unused, cell_inp__cur_tgt):
"""Decoder loop function."""
state, prev_cell_out, _ = state__prev_cell_out__unused
cell_inp, cur_tgt = cell_inp__cur_tgt
attn_q = tf.layers.dense(prev_cell_out, height * nmaps,
name="attn_query")
attn_res = attention_query(attn_q, tf.get_variable(
......
......@@ -14,6 +14,8 @@
# ==============================================================================
"""Neural GPU."""
from __future__ import print_function
import math
import os
import random
......@@ -22,6 +24,7 @@ import threading
import time
import numpy as np
from six.moves import xrange
import tensorflow as tf
import program_utils
......@@ -144,7 +147,7 @@ def read_data(source_path, target_path, buckets, max_size=None, print_out=True):
while source and target and (not max_size or counter < max_size):
counter += 1
if counter % 100000 == 0 and print_out:
print " reading data line %d" % counter
print(" reading data line %d" % counter)
sys.stdout.flush()
source_ids = [int(x) for x in source.split()]
target_ids = [int(x) for x in target.split()]
......@@ -188,7 +191,7 @@ def read_data_into_global(source_path, target_path, buckets,
global_train_set["wmt"].append(data_set)
train_total_size = calculate_buckets_scale(data_set, buckets, "wmt")
if print_out:
print " Finished global data reading (%d)." % train_total_size
print(" Finished global data reading (%d)." % train_total_size)
def initialize(sess=None):
......@@ -552,7 +555,7 @@ def score_beams_prog(beams, target, inp, history, print_out=False,
for h in history]
tgt_set = set(target)
if print_out:
print "target: ", tgt_prog
print("target: ", tgt_prog)
inps, tgt_outs = [], []
for i in xrange(3):
ilist = [inp[i + 1, l] for l in xrange(inp.shape[1])]
......@@ -566,11 +569,11 @@ def score_beams_prog(beams, target, inp, history, print_out=False,
if len(olist) == 1:
tgt_outs.append(olist[0])
else:
print [program_utils.prog_vocab[x] for x in ilist if x > 0]
print olist
print tgt_prog
print program_utils.evaluate(tgt_prog, {"a": inps[-1]})
print "AAAAA"
print([program_utils.prog_vocab[x] for x in ilist if x > 0])
print(olist)
print(tgt_prog)
print(program_utils.evaluate(tgt_prog, {"a": inps[-1]}))
print("AAAAA")
tgt_outs.append(olist[0])
if not test_mode:
for _ in xrange(7):
......@@ -602,7 +605,7 @@ def score_beams_prog(beams, target, inp, history, print_out=False,
best_prog = b_prog
best_score = score
if print_out:
print "best score: ", best_score, " best prog: ", best_prog
print("best score: ", best_score, " best prog: ", best_prog)
return best, best_score
......@@ -719,7 +722,7 @@ def train():
inp = new_inp
# If all results are great, stop (todo: not to wait for all?).
if FLAGS.nprint > 1:
print scores
print(scores)
if sum(scores) / float(len(scores)) >= 10.0:
break
# The final step with the true target.
......@@ -735,7 +738,7 @@ def train():
errors, total, seq_err = data.accuracy(
inp, res, target, batch_size, 0, new_target, scores)
if FLAGS.nprint > 1:
print "seq_err: ", seq_err
print("seq_err: ", seq_err)
acc_total += total
acc_errors += errors
acc_seq_err += seq_err
......@@ -944,8 +947,8 @@ def interactive():
for v in tf.trainable_variables():
shape = v.get_shape().as_list()
total += mul(shape)
print (v.name, shape, mul(shape))
print total
print(v.name, shape, mul(shape))
print(total)
# Start interactive loop.
sys.stdout.write("Input to Neural GPU Translation Model.\n")
sys.stdout.write("> ")
......@@ -960,7 +963,7 @@ def interactive():
normalize_digits=FLAGS.normalize_digits)
else:
token_ids = wmt.sentence_to_token_ids(inpt, en_vocab)
print [rev_en_vocab[t] for t in token_ids]
print([rev_en_vocab[t] for t in token_ids])
# Which bucket does it belong to?
buckets = [b for b in xrange(len(data.bins))
if data.bins[b] >= max(len(token_ids), len(cures))]
......@@ -986,12 +989,12 @@ def interactive():
loss = loss[0] - (data.bins[bucket_id] * FLAGS.length_norm)
outputs = [int(np.argmax(logit, axis=1))
for logit in output_logits]
print [rev_fr_vocab[t] for t in outputs]
print loss, data.bins[bucket_id]
print linearize(outputs, rev_fr_vocab)
print([rev_fr_vocab[t] for t in outputs])
print(loss, data.bins[bucket_id])
print(linearize(outputs, rev_fr_vocab))
cures.append(outputs[gen_idx])
print cures
print linearize(cures, rev_fr_vocab)
print(cures)
print(linearize(cures, rev_fr_vocab))
if FLAGS.simple_tokenizer:
cur_out = outputs
if wmt.EOS_ID in cur_out:
......@@ -1002,11 +1005,11 @@ def interactive():
if loss < result_cost:
result = outputs
result_cost = loss
print ("FINAL", result_cost)
print [rev_fr_vocab[t] for t in result]
print linearize(result, rev_fr_vocab)
print("FINAL", result_cost)
print([rev_fr_vocab[t] for t in result])
print(linearize(result, rev_fr_vocab))
else:
print "TOOO_LONG"
print("TOOO_LONG")
sys.stdout.write("> ")
sys.stdout.flush()
inpt = sys.stdin.readline(), ""
......
......@@ -31,7 +31,7 @@ class ListType(object):
if not isinstance(other, ListType):
return False
return self.arg == other.arg
def __hash__(self):
return hash(self.arg)
......@@ -68,7 +68,7 @@ class FunctionType(object):
class Function(object):
def __init__(self, name, arg_types, output_type, fn_arg_types = None):
self.name = name
self.name = name
self.arg_types = arg_types
self.fn_arg_types = fn_arg_types or []
self.output_type = output_type
......@@ -113,14 +113,14 @@ def minus_one(x): return x - 1
def times_two(x): return x * 2
def neg(x): return x * (-1)
def div_two(x): return int(x/2)
def sq(x): return x**2
def sq(x): return x**2
def times_three(x): return x * 3
def div_three(x): return int(x/3)
def times_four(x): return x * 4
def div_four(x): return int(x/4)
# Int -> Bool
def pos(x): return x > 0
# Int -> Bool
def pos(x): return x > 0
def neg(x): return x < 0
def even(x): return x%2 == 0
def odd(x): return x%2 == 1
......@@ -131,24 +131,24 @@ def sub(x, y): return x - y
def mul(x, y): return x * y
# HOFs
f_map = Function("map", [ListType("Int")],
ListType("Int"),
f_map = Function("map", [ListType("Int")],
ListType("Int"),
[FunctionType(["Int", "Int"])])
f_filter = Function("filter", [ListType("Int")],
ListType("Int"),
f_filter = Function("filter", [ListType("Int")],
ListType("Int"),
[FunctionType(["Int", "Bool"])])
f_count = Function("c_count", [ListType("Int")],
"Int",
f_count = Function("c_count", [ListType("Int")],
"Int",
[FunctionType(["Int", "Bool"])])
def c_count(f, xs): return len([x for x in xs if f(x)])
f_zipwith = Function("c_zipwith", [ListType("Int"), ListType("Int")],
ListType("Int"),
f_zipwith = Function("c_zipwith", [ListType("Int"), ListType("Int")],
ListType("Int"),
[FunctionType(["Int", "Int", "Int"])]) #FIX
def c_zipwith(f, xs, ys): return [f(x, y) for (x, y) in zip(xs, ys)]
f_scan = Function("c_scan", [ListType("Int")],
ListType("Int"),
ListType("Int"),
[FunctionType(["Int", "Int", "Int"])])
def c_scan(f, xs):
out = xs
......@@ -177,7 +177,7 @@ def evaluate(program_str, input_names_to_vals, default="ERROR"):
with stdoutIO() as s:
# pylint: disable=bare-except
try:
exec exec_str + " print(out)"
exec(exec_str + " print(out)")
return s.getvalue()[:-1]
except:
return default
......@@ -186,7 +186,7 @@ def evaluate(program_str, input_names_to_vals, default="ERROR"):
class Statement(object):
"""Statement class."""
def __init__(self, fn, output_var, arg_vars, fn_args=None):
self.fn = fn
self.output_var = output_var
......@@ -290,7 +290,7 @@ class Program(object):
with stdoutIO() as s:
# pylint: disable=exec-used
exec inp_str + self.body + "; print(out)"
exec(inp_str + self.body + "; print(out)")
# pylint: enable=exec-used
return s.getvalue()[:-1]
......@@ -412,11 +412,11 @@ def gen(max_len, how_many):
else:
outcomes_to_programs[outcome_str] = t.flat_str()
if counter % 5000 == 0:
print "== proggen: tried: " + str(counter)
print "== proggen: kept: " + str(len(outcomes_to_programs))
print("== proggen: tried: " + str(counter))
print("== proggen: kept: " + str(len(outcomes_to_programs)))
if counter % 250000 == 0 and save_prefix is not None:
print "saving..."
print("saving...")
save_counter = 0
progfilename = os.path.join(save_prefix, "prog_" + str(counter) + ".txt")
iofilename = os.path.join(save_prefix, "io_" + str(counter) + ".txt")
......@@ -431,7 +431,7 @@ def gen(max_len, how_many):
for (o, p) in outcomes_to_programs.iteritems():
save_counter += 1
if save_counter % 500 == 0:
print "saving %d of %d" % (save_counter, len(outcomes_to_programs))
print("saving %d of %d" % (save_counter, len(outcomes_to_programs)))
fp.write(p+"\n")
fi.write(o+"\n")
ftp.write(str(tokenize(p, tokens))+"\n")
......
......@@ -14,6 +14,8 @@
# ==============================================================================
"""Utilities for downloading data from WMT, tokenizing, vocabularies."""
from __future__ import print_function
import gzip
import os
import re
......@@ -53,20 +55,20 @@ _WMT_ENFR_DEV_URL = "http://www.statmt.org/wmt15/dev-v2.tgz"
def maybe_download(directory, filename, url):
"""Download filename from url unless it's already in directory."""
if not tf.gfile.Exists(directory):
print "Creating directory %s" % directory
print("Creating directory %s" % directory)
os.mkdir(directory)
filepath = os.path.join(directory, filename)
if not tf.gfile.Exists(filepath):
print "Downloading %s to %s" % (url, filepath)
print("Downloading %s to %s" % (url, filepath))
filepath, _ = urllib.request.urlretrieve(url, filepath)
statinfo = os.stat(filepath)
print "Successfully downloaded", filename, statinfo.st_size, "bytes"
print("Successfully downloaded", filename, statinfo.st_size, "bytes")
return filepath
def gunzip_file(gz_path, new_path):
"""Unzips from gz_path into new_path."""
print "Unpacking %s to %s" % (gz_path, new_path)
print("Unpacking %s to %s" % (gz_path, new_path))
with gzip.open(gz_path, "rb") as gz_file:
with open(new_path, "wb") as new_file:
for line in gz_file:
......@@ -80,7 +82,7 @@ def get_wmt_enfr_train_set(directory):
tf.gfile.Exists(train_path +".en")):
corpus_file = maybe_download(directory, "training-giga-fren.tar",
_WMT_ENFR_TRAIN_URL)
print "Extracting tar file %s" % corpus_file
print("Extracting tar file %s" % corpus_file)
with tarfile.open(corpus_file, "r") as corpus_tar:
corpus_tar.extractall(directory)
gunzip_file(train_path + ".fr.gz", train_path + ".fr")
......@@ -95,7 +97,7 @@ def get_wmt_enfr_dev_set(directory):
if not (tf.gfile.Exists(dev_path + ".fr") and
tf.gfile.Exists(dev_path + ".en")):
dev_file = maybe_download(directory, "dev-v2.tgz", _WMT_ENFR_DEV_URL)
print "Extracting tgz file %s" % dev_file
print("Extracting tgz file %s" % dev_file)
with tarfile.open(dev_file, "r:gz") as dev_tar:
fr_dev_file = dev_tar.getmember("dev/" + dev_name + ".fr")
en_dev_file = dev_tar.getmember("dev/" + dev_name + ".en")
......@@ -206,7 +208,7 @@ def create_vocabulary(vocabulary_path, data_path, max_vocabulary_size,
normalize_digits: Boolean; if true, all digits are replaced by 0s.
"""
if not tf.gfile.Exists(vocabulary_path):
print "Creating vocabulary %s from data %s" % (vocabulary_path, data_path)
print("Creating vocabulary %s from data %s" % (vocabulary_path, data_path))
vocab, chars = {}, {}
for c in _PUNCTUATION:
chars[c] = 1
......@@ -218,7 +220,7 @@ def create_vocabulary(vocabulary_path, data_path, max_vocabulary_size,
line = " ".join(line_in.split())
counter += 1
if counter % 100000 == 0:
print " processing fr line %d" % counter
print(" processing fr line %d" % counter)
for c in line:
if c in chars:
chars[c] += 1
......@@ -240,7 +242,7 @@ def create_vocabulary(vocabulary_path, data_path, max_vocabulary_size,
line = " ".join(line_in.split())
counter += 1
if counter % 100000 == 0:
print " processing en line %d" % counter
print(" processing en line %d" % counter)
for c in line:
if c in chars:
chars[c] += 1
......@@ -371,7 +373,7 @@ def data_to_token_ids(data_path, target_path, vocabulary_path,
normalize_digits: Boolean; if true, all digits are replaced by 0s.
"""
if not tf.gfile.Exists(target_path):
print "Tokenizing data in %s" % data_path
print("Tokenizing data in %s" % data_path)
vocab, _ = initialize_vocabulary(vocabulary_path)
with tf.gfile.GFile(data_path, mode="rb") as data_file:
with tf.gfile.GFile(target_path, mode="w") as tokens_file:
......@@ -379,7 +381,7 @@ def data_to_token_ids(data_path, target_path, vocabulary_path,
for line in data_file:
counter += 1
if counter % 100000 == 0:
print " tokenizing line %d" % counter
print(" tokenizing line %d" % counter)
token_ids = sentence_to_token_ids(line, vocab, tokenizer,
normalize_digits)
tokens_file.write(" ".join([str(tok) for tok in token_ids]) + "\n")
......
......@@ -15,6 +15,8 @@
"""Functions for constructing vocabulary, converting the examples to integer format and building the required masks for batch computation Author: aneelakantan (Arvind Neelakantan)
"""
from __future__ import print_function
import copy
import numbers
import numpy as np
......@@ -536,15 +538,15 @@ def add_special_words(utility):
utility.reverse_word_ids[utility.word_ids[
utility.entry_match_token]] = utility.entry_match_token
utility.entry_match_token_id = utility.word_ids[utility.entry_match_token]
print "entry match token: ", utility.word_ids[
utility.entry_match_token], utility.entry_match_token_id
print("entry match token: ", utility.word_ids[
utility.entry_match_token], utility.entry_match_token_id)
utility.words.append(utility.column_match_token)
utility.word_ids[utility.column_match_token] = len(utility.word_ids)
utility.reverse_word_ids[utility.word_ids[
utility.column_match_token]] = utility.column_match_token
utility.column_match_token_id = utility.word_ids[utility.column_match_token]
print "entry match token: ", utility.word_ids[
utility.column_match_token], utility.column_match_token_id
print("entry match token: ", utility.word_ids[
utility.column_match_token], utility.column_match_token_id)
utility.words.append(utility.dummy_token)
utility.word_ids[utility.dummy_token] = len(utility.word_ids)
utility.reverse_word_ids[utility.word_ids[
......
......@@ -15,6 +15,8 @@
"""Author: aneelakantan (Arvind Neelakantan)
"""
from __future__ import print_function
import numpy as np
import tensorflow as tf
import nn_utils
......@@ -545,7 +547,7 @@ class Graph():
self.batch_log_prob = tf.zeros([self.batch_size], dtype=self.data_type)
#Perform max_passes and at each pass select operation and column
for curr_pass in range(max_passes):
print "step: ", curr_pass
print("step: ", curr_pass)
output, select, softmax, soft_softmax, column_softmax, soft_column_softmax = self.one_pass(
select, question_embedding, hidden_vectors, hprev, prev_select_1,
curr_pass)
......@@ -633,10 +635,10 @@ class Graph():
self.params = params
batch_size = self.batch_size
learning_rate = tf.cast(self.utility.FLAGS.learning_rate, self.data_type)
self.total_cost = self.compute_error()
self.total_cost = self.compute_error()
optimize_params = self.params.values()
optimize_names = self.params.keys()
print "optimize params ", optimize_names
print("optimize params ", optimize_names)
if (self.utility.FLAGS.l2_regularizer > 0.0):
reg_cost = 0.0
for ind_param in self.params.keys():
......@@ -645,7 +647,7 @@ class Graph():
grads = tf.gradients(self.total_cost, optimize_params, name="gradients")
grad_norm = 0.0
for p, name in zip(grads, optimize_names):
print "grads: ", p, name
print("grads: ", p, name)
if isinstance(p, tf.IndexedSlices):
grad_norm += tf.reduce_sum(p.values * p.values)
elif not (p == None):
......@@ -672,7 +674,6 @@ class Graph():
learning_rate,
epsilon=tf.cast(self.utility.FLAGS.eps, self.data_type),
use_locking=True)
self.step = adam.apply_gradients(zip(grads, optimize_params),
self.step = adam.apply_gradients(zip(grads, optimize_params),
global_step=self.global_step)
self.init_op = tf.global_variables_initializer()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment