Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
6b9d5fba
Unverified
Commit
6b9d5fba
authored
Jan 24, 2018
by
Toby Boyd
Committed by
GitHub
Jan 24, 2018
Browse files
Merge branch 'master' into patch-1
parents
5fd687c5
5fa2a4e6
Changes
147
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
50 additions
and
35 deletions
+50
-35
research/cognitive_mapping_and_planning/src/utils.py
research/cognitive_mapping_and_planning/src/utils.py
+4
-4
research/compression/entropy_coder/core/entropy_coder_single.py
...ch/compression/entropy_coder/core/entropy_coder_single.py
+1
-1
research/compression/entropy_coder/core/entropy_coder_train.py
...rch/compression/entropy_coder/core/entropy_coder_train.py
+1
-1
research/compression/entropy_coder/dataset/gen_synthetic_dataset.py
...ompression/entropy_coder/dataset/gen_synthetic_dataset.py
+1
-0
research/compression/entropy_coder/dataset/synthetic_model.py
...arch/compression/entropy_coder/dataset/synthetic_model.py
+1
-0
research/compression/entropy_coder/lib/block_util.py
research/compression/entropy_coder/lib/block_util.py
+3
-2
research/compression/entropy_coder/lib/blocks_masked_conv2d.py
...rch/compression/entropy_coder/lib/blocks_masked_conv2d.py
+1
-0
research/compression/entropy_coder/lib/blocks_masked_conv2d_test.py
...ompression/entropy_coder/lib/blocks_masked_conv2d_test.py
+1
-0
research/compression/entropy_coder/lib/blocks_std_test.py
research/compression/entropy_coder/lib/blocks_std_test.py
+1
-0
research/delf/delf/python/feature_io.py
research/delf/delf/python/feature_io.py
+1
-0
research/differential_privacy/dp_sgd/dp_mnist/dp_mnist.py
research/differential_privacy/dp_sgd/dp_mnist/dp_mnist.py
+1
-0
research/differential_privacy/dp_sgd/per_example_gradients/per_example_gradients.py
...acy/dp_sgd/per_example_gradients/per_example_gradients.py
+1
-0
research/differential_privacy/multiple_teachers/aggregation.py
...rch/differential_privacy/multiple_teachers/aggregation.py
+1
-2
research/differential_privacy/multiple_teachers/analysis.py
research/differential_privacy/multiple_teachers/analysis.py
+11
-10
research/differential_privacy/multiple_teachers/deep_cnn.py
research/differential_privacy/multiple_teachers/deep_cnn.py
+1
-2
research/differential_privacy/multiple_teachers/input.py
research/differential_privacy/multiple_teachers/input.py
+1
-0
research/differential_privacy/multiple_teachers/train_student.py
...h/differential_privacy/multiple_teachers/train_student.py
+1
-0
research/differential_privacy/privacy_accountant/python/gaussian_moments.py
...ial_privacy/privacy_accountant/python/gaussian_moments.py
+16
-13
research/domain_adaptation/domain_separation/dsn_eval.py
research/domain_adaptation/domain_separation/dsn_eval.py
+1
-0
research/gan/cifar/util.py
research/gan/cifar/util.py
+1
-0
No files found.
research/cognitive_mapping_and_planning/src/utils.py
View file @
6b9d5fba
...
...
@@ -17,6 +17,7 @@ r"""Generaly Utilities.
"""
import
numpy
as
np
,
cPickle
,
os
,
time
from
six.moves
import
xrange
import
src.file_utils
as
fu
import
logging
...
...
@@ -93,12 +94,12 @@ def tic_toc_print(interval, string):
global
tic_toc_print_time_old
if
'tic_toc_print_time_old'
not
in
globals
():
tic_toc_print_time_old
=
time
.
time
()
print
string
print
(
string
)
else
:
new_time
=
time
.
time
()
if
new_time
-
tic_toc_print_time_old
>
interval
:
tic_toc_print_time_old
=
new_time
;
print
string
print
(
string
)
def
mkdir_if_missing
(
output_dir
):
if
not
fu
.
exists
(
output_dir
):
...
...
@@ -126,7 +127,7 @@ def load_variables(pickle_file_name):
def
voc_ap
(
rec
,
prec
):
rec
=
rec
.
reshape
((
-
1
,
1
))
prec
=
prec
.
reshape
((
-
1
,
1
))
z
=
np
.
zeros
((
1
,
1
))
z
=
np
.
zeros
((
1
,
1
))
o
=
np
.
ones
((
1
,
1
))
mrec
=
np
.
vstack
((
z
,
rec
,
o
))
mpre
=
np
.
vstack
((
z
,
prec
,
z
))
...
...
@@ -165,4 +166,3 @@ def calc_pr(gt, out, wt=None):
ap
=
voc_ap
(
rec
,
prec
)
return
ap
,
rec
,
prec
research/compression/entropy_coder/core/entropy_coder_single.py
View file @
6b9d5fba
...
...
@@ -58,7 +58,7 @@ def main(_):
#iteration = FLAGS.iteration
if
not
tf
.
gfile
.
Exists
(
FLAGS
.
input_codes
):
print
'
\n
Input codes not found.
\n
'
print
(
'
\n
Input codes not found.
\n
'
)
return
with
tf
.
gfile
.
FastGFile
(
FLAGS
.
input_codes
,
'rb'
)
as
code_file
:
...
...
research/compression/entropy_coder/core/entropy_coder_train.py
View file @
6b9d5fba
...
...
@@ -171,7 +171,7 @@ def train():
'code_length'
:
model
.
average_code_length
}
np_tensors
=
sess
.
run
(
tf_tensors
,
feed_dict
=
feed_dict
)
print
np_tensors
[
'code_length'
]
print
(
np_tensors
[
'code_length'
]
)
sv
.
Stop
()
...
...
research/compression/entropy_coder/dataset/gen_synthetic_dataset.py
View file @
6b9d5fba
...
...
@@ -18,6 +18,7 @@
import
os
import
numpy
as
np
from
six.moves
import
xrange
import
tensorflow
as
tf
import
synthetic_model
...
...
research/compression/entropy_coder/dataset/synthetic_model.py
View file @
6b9d5fba
...
...
@@ -16,6 +16,7 @@
"""Binary code sample generator."""
import
numpy
as
np
from
six.moves
import
xrange
_CRC_LINE
=
[
...
...
research/compression/entropy_coder/lib/block_util.py
View file @
6b9d5fba
...
...
@@ -21,6 +21,7 @@ from __future__ import unicode_literals
import
math
import
numpy
as
np
import
six
import
tensorflow
as
tf
...
...
@@ -39,7 +40,7 @@ class RsqrtInitializer(object):
1.0 / sqrt(product(shape[dims]))
**kwargs: Extra keyword arguments to pass to tf.truncated_normal.
"""
if
isinstance
(
dims
,
(
int
,
long
)
):
if
isinstance
(
dims
,
six
.
integer_types
):
self
.
_dims
=
[
dims
]
else
:
self
.
_dims
=
dims
...
...
@@ -73,7 +74,7 @@ class RectifierInitializer(object):
sqrt(scale / product(shape[dims])).
**kwargs: Extra keyword arguments to pass to tf.truncated_normal.
"""
if
isinstance
(
dims
,
(
int
,
long
)
):
if
isinstance
(
dims
,
six
.
integer_types
):
self
.
_dims
=
[
dims
]
else
:
self
.
_dims
=
dims
...
...
research/compression/entropy_coder/lib/blocks_masked_conv2d.py
View file @
6b9d5fba
...
...
@@ -16,6 +16,7 @@
"""Define some typical masked 2D convolutions."""
import
numpy
as
np
from
six.moves
import
xrange
import
tensorflow
as
tf
import
block_util
...
...
research/compression/entropy_coder/lib/blocks_masked_conv2d_test.py
View file @
6b9d5fba
...
...
@@ -19,6 +19,7 @@ from __future__ import division
from
__future__
import
unicode_literals
import
numpy
as
np
from
six.moves
import
xrange
import
tensorflow
as
tf
import
blocks_masked_conv2d
...
...
research/compression/entropy_coder/lib/blocks_std_test.py
View file @
6b9d5fba
...
...
@@ -22,6 +22,7 @@ import math
import
os
import
numpy
as
np
from
six.moves
import
xrange
import
tensorflow
as
tf
import
blocks_std
...
...
research/delf/delf/python/feature_io.py
View file @
6b9d5fba
...
...
@@ -25,6 +25,7 @@ from __future__ import print_function
from
delf
import
feature_pb2
from
delf
import
datum_io
import
numpy
as
np
from
six.moves
import
xrange
import
tensorflow
as
tf
...
...
research/differential_privacy/dp_sgd/dp_mnist/dp_mnist.py
View file @
6b9d5fba
...
...
@@ -22,6 +22,7 @@ import sys
import
time
import
numpy
as
np
from
six.moves
import
xrange
import
tensorflow
as
tf
from
differential_privacy.dp_sgd.dp_optimizer
import
dp_optimizer
...
...
research/differential_privacy/dp_sgd/per_example_gradients/per_example_gradients.py
View file @
6b9d5fba
...
...
@@ -17,6 +17,7 @@
import
collections
from
six.moves
import
xrange
import
tensorflow
as
tf
OrderedDict
=
collections
.
OrderedDict
...
...
research/differential_privacy/multiple_teachers/aggregation.py
View file @
6b9d5fba
...
...
@@ -19,6 +19,7 @@ from __future__ import division
from
__future__
import
print_function
import
numpy
as
np
from
six.moves
import
xrange
def
labels_from_probs
(
probs
):
...
...
@@ -127,5 +128,3 @@ def aggregation_most_frequent(logits):
result
[
i
]
=
np
.
argmax
(
label_counts
)
return
np
.
asarray
(
result
,
dtype
=
np
.
int32
)
research/differential_privacy/multiple_teachers/analysis.py
View file @
6b9d5fba
...
...
@@ -41,6 +41,7 @@ python analysis.py
import
os
import
math
import
numpy
as
np
from
six.moves
import
xrange
import
tensorflow
as
tf
from
differential_privacy.multiple_teachers.input
import
maybe_download
...
...
@@ -139,7 +140,7 @@ def logmgf_exact(q, priv_eps, l):
try
:
log_t
=
math
.
log
(
t
)
except
ValueError
:
print
"Got ValueError in math.log for values :"
+
str
((
q
,
priv_eps
,
l
,
t
))
print
(
"Got ValueError in math.log for values :"
+
str
((
q
,
priv_eps
,
l
,
t
))
)
log_t
=
priv_eps
*
l
else
:
log_t
=
priv_eps
*
l
...
...
@@ -171,7 +172,7 @@ def sens_at_k(counts, noise_eps, l, k):
"""
counts_sorted
=
sorted
(
counts
,
reverse
=
True
)
if
0.5
*
noise_eps
*
l
>
1
:
print
"l too large to compute sensitivity"
print
(
"l too large to compute sensitivity"
)
return
0
# Now we can assume that at k, gap remains positive
# or we have reached the point where logmgf_exact is
...
...
@@ -268,8 +269,8 @@ def main(unused_argv):
# Solving gives eps = (alpha - ln (delta))/l
eps_list_nm
=
(
total_log_mgf_nm
-
math
.
log
(
delta
))
/
l_list
print
"Epsilons (Noisy Max): "
+
str
(
eps_list_nm
)
print
"Smoothed sensitivities (Noisy Max): "
+
str
(
total_ss_nm
/
l_list
)
print
(
"Epsilons (Noisy Max): "
+
str
(
eps_list_nm
)
)
print
(
"Smoothed sensitivities (Noisy Max): "
+
str
(
total_ss_nm
/
l_list
)
)
# If beta < eps / 2 ln (1/delta), then adding noise Lap(1) * 2 SS/eps
# is eps,delta DP
...
...
@@ -280,12 +281,12 @@ def main(unused_argv):
# Print the first one's scale
ss_eps
=
2.0
*
beta
*
math
.
log
(
1
/
delta
)
ss_scale
=
2.0
/
ss_eps
print
"To get an "
+
str
(
ss_eps
)
+
"-DP estimate of epsilon, "
print
"..add noise ~ "
+
str
(
ss_scale
)
print
"... times "
+
str
(
total_ss_nm
/
l_list
)
print
"Epsilon = "
+
str
(
min
(
eps_list_nm
))
+
"."
print
(
"To get an "
+
str
(
ss_eps
)
+
"-DP estimate of epsilon, "
)
print
(
"..add noise ~ "
+
str
(
ss_scale
)
)
print
(
"... times "
+
str
(
total_ss_nm
/
l_list
)
)
print
(
"Epsilon = "
+
str
(
min
(
eps_list_nm
))
+
"."
)
if
min
(
eps_list_nm
)
==
eps_list_nm
[
-
1
]:
print
"Warning: May not have used enough values of l"
print
(
"Warning: May not have used enough values of l"
)
# Data independent bound, as mechanism is
# 2*noise_eps DP.
...
...
@@ -294,7 +295,7 @@ def main(unused_argv):
[
logmgf_exact
(
1.0
,
2.0
*
noise_eps
,
l
)
for
l
in
l_list
])
data_ind_eps_list
=
(
data_ind_log_mgf
-
math
.
log
(
delta
))
/
l_list
print
"Data independent bound = "
+
str
(
min
(
data_ind_eps_list
))
+
"."
print
(
"Data independent bound = "
+
str
(
min
(
data_ind_eps_list
))
+
"."
)
return
...
...
research/differential_privacy/multiple_teachers/deep_cnn.py
View file @
6b9d5fba
...
...
@@ -20,6 +20,7 @@ from __future__ import print_function
from
datetime
import
datetime
import
math
import
numpy
as
np
from
six.moves
import
xrange
import
tensorflow
as
tf
import
time
...
...
@@ -600,5 +601,3 @@ def softmax_preds(images, ckpt_path, return_logits=False):
tf
.
reset_default_graph
()
return
preds
research/differential_privacy/multiple_teachers/input.py
View file @
6b9d5fba
...
...
@@ -24,6 +24,7 @@ import numpy as np
import
os
from
scipy.io
import
loadmat
as
loadmat
from
six.moves
import
urllib
from
six.moves
import
xrange
import
sys
import
tarfile
...
...
research/differential_privacy/multiple_teachers/train_student.py
View file @
6b9d5fba
...
...
@@ -19,6 +19,7 @@ from __future__ import division
from
__future__
import
print_function
import
numpy
as
np
from
six.moves
import
xrange
import
tensorflow
as
tf
from
differential_privacy.multiple_teachers
import
aggregation
...
...
research/differential_privacy/privacy_accountant/python/gaussian_moments.py
View file @
6b9d5fba
...
...
@@ -40,12 +40,15 @@ To verify that the I1 >= I2 (see comments in GaussianMomentsAccountant in
accountant.py for the context), run the same loop above with verify=True
passed to compute_log_moment.
"""
from
__future__
import
print_function
import
math
import
sys
import
numpy
as
np
import
scipy.integrate
as
integrate
import
scipy.stats
from
six.moves
import
xrange
from
sympy.mpmath
import
mp
...
...
@@ -108,10 +111,10 @@ def compute_a(sigma, q, lmbd, verbose=False):
a_lambda_exact
=
((
1.0
-
q
)
*
a_lambda_first_term_exact
+
q
*
a_lambda_second_term_exact
)
if
verbose
:
print
"A: by binomial expansion {} = {} + {}"
.
format
(
print
(
"A: by binomial expansion {} = {} + {}"
.
format
(
a_lambda_exact
,
(
1.0
-
q
)
*
a_lambda_first_term_exact
,
q
*
a_lambda_second_term_exact
)
q
*
a_lambda_second_term_exact
)
)
return
_to_np_float64
(
a_lambda_exact
)
...
...
@@ -125,8 +128,8 @@ def compute_b(sigma, q, lmbd, verbose=False):
b_fn
=
lambda
z
:
(
np
.
power
(
mu0
(
z
)
/
mu
(
z
),
lmbd
)
-
np
.
power
(
mu
(
-
z
)
/
mu0
(
z
),
lmbd
))
if
verbose
:
print
"M ="
,
m
print
"f(-M) = {} f(M) = {}"
.
format
(
b_fn
(
-
m
),
b_fn
(
m
))
print
(
"M ="
,
m
)
print
(
"f(-M) = {} f(M) = {}"
.
format
(
b_fn
(
-
m
),
b_fn
(
m
))
)
assert
b_fn
(
-
m
)
<
0
and
b_fn
(
m
)
<
0
b_lambda_int1_fn
=
lambda
z
:
(
mu0
(
z
)
*
...
...
@@ -140,9 +143,9 @@ def compute_b(sigma, q, lmbd, verbose=False):
b_bound
=
a_lambda_m1
+
b_int1
-
b_int2
if
verbose
:
print
"B: by numerical integration"
,
b_lambda
print
"B must be no more than "
,
b_bound
print
b_lambda
,
b_bound
print
(
"B: by numerical integration"
,
b_lambda
)
print
(
"B must be no more than "
,
b_bound
)
print
(
b_lambda
,
b_bound
)
return
_to_np_float64
(
b_lambda
)
...
...
@@ -188,10 +191,10 @@ def compute_a_mp(sigma, q, lmbd, verbose=False):
a_lambda_second_term
=
integral_inf_mp
(
a_lambda_second_term_fn
)
if
verbose
:
print
"A: by numerical integration {} = {} + {}"
.
format
(
print
(
"A: by numerical integration {} = {} + {}"
.
format
(
a_lambda
,
(
1
-
q
)
*
a_lambda_first_term
,
q
*
a_lambda_second_term
)
q
*
a_lambda_second_term
)
)
return
_to_np_float64
(
a_lambda
)
...
...
@@ -210,8 +213,8 @@ def compute_b_mp(sigma, q, lmbd, verbose=False):
b_fn
=
lambda
z
:
((
mu0
(
z
)
/
mu
(
z
))
**
lmbd_int
-
(
mu
(
-
z
)
/
mu0
(
z
))
**
lmbd_int
)
if
verbose
:
print
"M ="
,
m
print
"f(-M) = {} f(M) = {}"
.
format
(
b_fn
(
-
m
),
b_fn
(
m
))
print
(
"M ="
,
m
)
print
(
"f(-M) = {} f(M) = {}"
.
format
(
b_fn
(
-
m
),
b_fn
(
m
))
)
assert
b_fn
(
-
m
)
<
0
and
b_fn
(
m
)
<
0
b_lambda_int1_fn
=
lambda
z
:
mu0
(
z
)
*
(
mu0
(
z
)
/
mu
(
z
))
**
lmbd_int
...
...
@@ -223,8 +226,8 @@ def compute_b_mp(sigma, q, lmbd, verbose=False):
b_bound
=
a_lambda_m1
+
b_int1
-
b_int2
if
verbose
:
print
"B by numerical integration"
,
b_lambda
print
"B must be no more than "
,
b_bound
print
(
"B by numerical integration"
,
b_lambda
)
print
(
"B must be no more than "
,
b_bound
)
assert
b_lambda
<
b_bound
+
1e-5
return
_to_np_float64
(
b_lambda
)
...
...
research/domain_adaptation/domain_separation/dsn_eval.py
View file @
6b9d5fba
...
...
@@ -19,6 +19,7 @@
import
math
import
numpy
as
np
from
six.moves
import
xrange
import
tensorflow
as
tf
from
domain_adaptation.datasets
import
dataset_factory
...
...
research/gan/cifar/util.py
View file @
6b9d5fba
...
...
@@ -18,6 +18,7 @@ from __future__ import absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
six.moves
import
xrange
import
tensorflow
as
tf
tfgan
=
tf
.
contrib
.
gan
...
...
Prev
1
2
3
4
5
6
…
8
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment