"git@developer.sourcefind.cn:modelzoo/resnet50_tensorflow.git" did not exist on "d03ce000060b42ce9b0210286ce8a859da11160a"
Commit 693e53c4 authored by A. Unique TensorFlower's avatar A. Unique TensorFlower
Browse files

Internal change

PiperOrigin-RevId: 330543007
parent 12827262
...@@ -151,7 +151,8 @@ class BertEncoderTest(keras_parameterized.TestCase): ...@@ -151,7 +151,8 @@ class BertEncoderTest(keras_parameterized.TestCase):
mask_data = np.random.randint(2, size=(batch_size, sequence_length)) mask_data = np.random.randint(2, size=(batch_size, sequence_length))
type_id_data = np.random.randint( type_id_data = np.random.randint(
num_types, size=(batch_size, sequence_length)) num_types, size=(batch_size, sequence_length))
_ = model.predict([word_id_data, mask_data, type_id_data]) outputs = model.predict([word_id_data, mask_data, type_id_data])
self.assertEqual(outputs[0].shape[1], out_seq_len)
# Creates a BertEncoder with max_sequence_length != sequence_length # Creates a BertEncoder with max_sequence_length != sequence_length
max_sequence_length = 128 max_sequence_length = 128
...@@ -162,9 +163,10 @@ class BertEncoderTest(keras_parameterized.TestCase): ...@@ -162,9 +163,10 @@ class BertEncoderTest(keras_parameterized.TestCase):
num_attention_heads=2, num_attention_heads=2,
num_layers=3, num_layers=3,
type_vocab_size=num_types) type_vocab_size=num_types)
data, pooled = test_network([word_ids, mask, type_ids])
model = tf.keras.Model([word_ids, mask, type_ids], [data, pooled]) model = tf.keras.Model([word_ids, mask, type_ids], [data, pooled])
outputs = model.predict([word_id_data, mask_data, type_id_data]) outputs = model.predict([word_id_data, mask_data, type_id_data])
self.assertEqual(outputs[0].shape[1], out_seq_len) self.assertEqual(outputs[0].shape[1], sequence_length)
# Creates a BertEncoder with embedding_width != hidden_size # Creates a BertEncoder with embedding_width != hidden_size
test_network = bert_encoder.BertEncoder( test_network = bert_encoder.BertEncoder(
...@@ -175,6 +177,7 @@ class BertEncoderTest(keras_parameterized.TestCase): ...@@ -175,6 +177,7 @@ class BertEncoderTest(keras_parameterized.TestCase):
num_layers=3, num_layers=3,
type_vocab_size=num_types, type_vocab_size=num_types,
embedding_width=16) embedding_width=16)
data, pooled = test_network([word_ids, mask, type_ids])
model = tf.keras.Model([word_ids, mask, type_ids], [data, pooled]) model = tf.keras.Model([word_ids, mask, type_ids], [data, pooled])
outputs = model.predict([word_id_data, mask_data, type_id_data]) outputs = model.predict([word_id_data, mask_data, type_id_data])
self.assertEqual(outputs[0].shape[-1], hidden_size) self.assertEqual(outputs[0].shape[-1], hidden_size)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment