Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
65174bdc
Commit
65174bdc
authored
May 06, 2022
by
Scott Zhu
Committed by
A. Unique TensorFlower
May 06, 2022
Browse files
Internal change
PiperOrigin-RevId: 447077996
parent
fd015075
Changes
8
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
137 additions
and
82 deletions
+137
-82
official/vision/modeling/decoders/nasfpn.py
official/vision/modeling/decoders/nasfpn.py
+22
-19
official/vision/modeling/heads/dense_prediction_heads.py
official/vision/modeling/heads/dense_prediction_heads.py
+12
-0
official/vision/modeling/heads/instance_heads.py
official/vision/modeling/heads/instance_heads.py
+8
-0
official/vision/modeling/heads/segmentation_heads.py
official/vision/modeling/heads/segmentation_heads.py
+11
-10
official/vision/modeling/layers/deeplab.py
official/vision/modeling/layers/deeplab.py
+36
-17
official/vision/modeling/layers/nn_blocks.py
official/vision/modeling/layers/nn_blocks.py
+32
-24
official/vision/modeling/layers/nn_blocks_3d.py
official/vision/modeling/layers/nn_blocks_3d.py
+6
-5
official/vision/modeling/layers/nn_layers.py
official/vision/modeling/layers/nn_layers.py
+10
-7
No files found.
official/vision/modeling/decoders/nasfpn.py
View file @
65174bdc
...
@@ -135,25 +135,6 @@ class NASFPN(tf.keras.Model):
...
@@ -135,25 +135,6 @@ class NASFPN(tf.keras.Model):
self
.
_conv_op
=
(
tf
.
keras
.
layers
.
SeparableConv2D
self
.
_conv_op
=
(
tf
.
keras
.
layers
.
SeparableConv2D
if
self
.
_config_dict
[
'use_separable_conv'
]
if
self
.
_config_dict
[
'use_separable_conv'
]
else
tf
.
keras
.
layers
.
Conv2D
)
else
tf
.
keras
.
layers
.
Conv2D
)
if
self
.
_config_dict
[
'use_separable_conv'
]:
self
.
_conv_kwargs
=
{
'depthwise_initializer'
:
tf
.
keras
.
initializers
.
VarianceScaling
(
scale
=
2
,
mode
=
'fan_out'
,
distribution
=
'untruncated_normal'
),
'pointwise_initializer'
:
tf
.
keras
.
initializers
.
VarianceScaling
(
scale
=
2
,
mode
=
'fan_out'
,
distribution
=
'untruncated_normal'
),
'bias_initializer'
:
tf
.
zeros_initializer
(),
'depthwise_regularizer'
:
self
.
_config_dict
[
'kernel_regularizer'
],
'pointwise_regularizer'
:
self
.
_config_dict
[
'kernel_regularizer'
],
'bias_regularizer'
:
self
.
_config_dict
[
'bias_regularizer'
],
}
else
:
self
.
_conv_kwargs
=
{
'kernel_initializer'
:
tf
.
keras
.
initializers
.
VarianceScaling
(
scale
=
2
,
mode
=
'fan_out'
,
distribution
=
'untruncated_normal'
),
'bias_initializer'
:
tf
.
zeros_initializer
(),
'kernel_regularizer'
:
self
.
_config_dict
[
'kernel_regularizer'
],
'bias_regularizer'
:
self
.
_config_dict
[
'bias_regularizer'
],
}
self
.
_norm_op
=
(
tf
.
keras
.
layers
.
experimental
.
SyncBatchNormalization
self
.
_norm_op
=
(
tf
.
keras
.
layers
.
experimental
.
SyncBatchNormalization
if
self
.
_config_dict
[
'use_sync_bn'
]
if
self
.
_config_dict
[
'use_sync_bn'
]
else
tf
.
keras
.
layers
.
BatchNormalization
)
else
tf
.
keras
.
layers
.
BatchNormalization
)
...
@@ -240,6 +221,28 @@ class NASFPN(tf.keras.Model):
...
@@ -240,6 +221,28 @@ class NASFPN(tf.keras.Model):
else
:
else
:
return
x
return
x
@
property
def
_conv_kwargs
(
self
):
if
self
.
_config_dict
[
'use_separable_conv'
]:
return
{
'depthwise_initializer'
:
tf
.
keras
.
initializers
.
VarianceScaling
(
scale
=
2
,
mode
=
'fan_out'
,
distribution
=
'untruncated_normal'
),
'pointwise_initializer'
:
tf
.
keras
.
initializers
.
VarianceScaling
(
scale
=
2
,
mode
=
'fan_out'
,
distribution
=
'untruncated_normal'
),
'bias_initializer'
:
tf
.
zeros_initializer
(),
'depthwise_regularizer'
:
self
.
_config_dict
[
'kernel_regularizer'
],
'pointwise_regularizer'
:
self
.
_config_dict
[
'kernel_regularizer'
],
'bias_regularizer'
:
self
.
_config_dict
[
'bias_regularizer'
],
}
else
:
return
{
'kernel_initializer'
:
tf
.
keras
.
initializers
.
VarianceScaling
(
scale
=
2
,
mode
=
'fan_out'
,
distribution
=
'untruncated_normal'
),
'bias_initializer'
:
tf
.
zeros_initializer
(),
'kernel_regularizer'
:
self
.
_config_dict
[
'kernel_regularizer'
],
'bias_regularizer'
:
self
.
_config_dict
[
'bias_regularizer'
],
}
def
_global_attention
(
self
,
feat0
,
feat1
):
def
_global_attention
(
self
,
feat0
,
feat1
):
m
=
tf
.
math
.
reduce_max
(
feat0
,
axis
=
[
1
,
2
],
keepdims
=
True
)
m
=
tf
.
math
.
reduce_max
(
feat0
,
axis
=
[
1
,
2
],
keepdims
=
True
)
m
=
tf
.
math
.
sigmoid
(
m
)
m
=
tf
.
math
.
sigmoid
(
m
)
...
...
official/vision/modeling/heads/dense_prediction_heads.py
View file @
65174bdc
...
@@ -140,6 +140,9 @@ class RetinaNetHead(tf.keras.layers.Layer):
...
@@ -140,6 +140,9 @@ class RetinaNetHead(tf.keras.layers.Layer):
for
i
in
range
(
self
.
_config_dict
[
'num_convs'
]):
for
i
in
range
(
self
.
_config_dict
[
'num_convs'
]):
if
level
==
self
.
_config_dict
[
'min_level'
]:
if
level
==
self
.
_config_dict
[
'min_level'
]:
cls_conv_name
=
'classnet-conv_{}'
.
format
(
i
)
cls_conv_name
=
'classnet-conv_{}'
.
format
(
i
)
if
'kernel_initializer'
in
conv_kwargs
:
conv_kwargs
[
'kernel_initializer'
]
=
tf_utils
.
clone_initializer
(
conv_kwargs
[
'kernel_initializer'
])
self
.
_cls_convs
.
append
(
conv_op
(
name
=
cls_conv_name
,
**
conv_kwargs
))
self
.
_cls_convs
.
append
(
conv_op
(
name
=
cls_conv_name
,
**
conv_kwargs
))
cls_norm_name
=
'classnet-conv-norm_{}_{}'
.
format
(
level
,
i
)
cls_norm_name
=
'classnet-conv-norm_{}_{}'
.
format
(
level
,
i
)
this_level_cls_norms
.
append
(
bn_op
(
name
=
cls_norm_name
,
**
bn_kwargs
))
this_level_cls_norms
.
append
(
bn_op
(
name
=
cls_norm_name
,
**
bn_kwargs
))
...
@@ -170,6 +173,9 @@ class RetinaNetHead(tf.keras.layers.Layer):
...
@@ -170,6 +173,9 @@ class RetinaNetHead(tf.keras.layers.Layer):
for
i
in
range
(
self
.
_config_dict
[
'num_convs'
]):
for
i
in
range
(
self
.
_config_dict
[
'num_convs'
]):
if
level
==
self
.
_config_dict
[
'min_level'
]:
if
level
==
self
.
_config_dict
[
'min_level'
]:
box_conv_name
=
'boxnet-conv_{}'
.
format
(
i
)
box_conv_name
=
'boxnet-conv_{}'
.
format
(
i
)
if
'kernel_initializer'
in
conv_kwargs
:
conv_kwargs
[
'kernel_initializer'
]
=
tf_utils
.
clone_initializer
(
conv_kwargs
[
'kernel_initializer'
])
self
.
_box_convs
.
append
(
conv_op
(
name
=
box_conv_name
,
**
conv_kwargs
))
self
.
_box_convs
.
append
(
conv_op
(
name
=
box_conv_name
,
**
conv_kwargs
))
box_norm_name
=
'boxnet-conv-norm_{}_{}'
.
format
(
level
,
i
)
box_norm_name
=
'boxnet-conv-norm_{}_{}'
.
format
(
level
,
i
)
this_level_box_norms
.
append
(
bn_op
(
name
=
box_norm_name
,
**
bn_kwargs
))
this_level_box_norms
.
append
(
bn_op
(
name
=
box_norm_name
,
**
bn_kwargs
))
...
@@ -211,6 +217,9 @@ class RetinaNetHead(tf.keras.layers.Layer):
...
@@ -211,6 +217,9 @@ class RetinaNetHead(tf.keras.layers.Layer):
for
i
in
range
(
self
.
_config_dict
[
'num_convs'
]):
for
i
in
range
(
self
.
_config_dict
[
'num_convs'
]):
if
level
==
self
.
_config_dict
[
'min_level'
]:
if
level
==
self
.
_config_dict
[
'min_level'
]:
att_conv_name
=
'{}-conv_{}'
.
format
(
att_name
,
i
)
att_conv_name
=
'{}-conv_{}'
.
format
(
att_name
,
i
)
if
'kernel_initializer'
in
conv_kwargs
:
conv_kwargs
[
'kernel_initializer'
]
=
tf_utils
.
clone_initializer
(
conv_kwargs
[
'kernel_initializer'
])
att_convs_i
.
append
(
conv_op
(
name
=
att_conv_name
,
**
conv_kwargs
))
att_convs_i
.
append
(
conv_op
(
name
=
att_conv_name
,
**
conv_kwargs
))
att_norm_name
=
'{}-conv-norm_{}_{}'
.
format
(
att_name
,
level
,
i
)
att_norm_name
=
'{}-conv-norm_{}_{}'
.
format
(
att_name
,
level
,
i
)
this_level_att_norms
.
append
(
bn_op
(
name
=
att_norm_name
,
**
bn_kwargs
))
this_level_att_norms
.
append
(
bn_op
(
name
=
att_norm_name
,
**
bn_kwargs
))
...
@@ -436,6 +445,9 @@ class RPNHead(tf.keras.layers.Layer):
...
@@ -436,6 +445,9 @@ class RPNHead(tf.keras.layers.Layer):
for
i
in
range
(
self
.
_config_dict
[
'num_convs'
]):
for
i
in
range
(
self
.
_config_dict
[
'num_convs'
]):
if
level
==
self
.
_config_dict
[
'min_level'
]:
if
level
==
self
.
_config_dict
[
'min_level'
]:
conv_name
=
'rpn-conv_{}'
.
format
(
i
)
conv_name
=
'rpn-conv_{}'
.
format
(
i
)
if
'kernel_initializer'
in
conv_kwargs
:
conv_kwargs
[
'kernel_initializer'
]
=
tf_utils
.
clone_initializer
(
conv_kwargs
[
'kernel_initializer'
])
self
.
_convs
.
append
(
conv_op
(
name
=
conv_name
,
**
conv_kwargs
))
self
.
_convs
.
append
(
conv_op
(
name
=
conv_name
,
**
conv_kwargs
))
norm_name
=
'rpn-conv-norm_{}_{}'
.
format
(
level
,
i
)
norm_name
=
'rpn-conv-norm_{}_{}'
.
format
(
level
,
i
)
this_level_norms
.
append
(
bn_op
(
name
=
norm_name
,
**
bn_kwargs
))
this_level_norms
.
append
(
bn_op
(
name
=
norm_name
,
**
bn_kwargs
))
...
...
official/vision/modeling/heads/instance_heads.py
View file @
65174bdc
...
@@ -133,6 +133,9 @@ class DetectionHead(tf.keras.layers.Layer):
...
@@ -133,6 +133,9 @@ class DetectionHead(tf.keras.layers.Layer):
self
.
_conv_norms
=
[]
self
.
_conv_norms
=
[]
for
i
in
range
(
self
.
_config_dict
[
'num_convs'
]):
for
i
in
range
(
self
.
_config_dict
[
'num_convs'
]):
conv_name
=
'detection-conv_{}'
.
format
(
i
)
conv_name
=
'detection-conv_{}'
.
format
(
i
)
if
'kernel_initializer'
in
conv_kwargs
:
conv_kwargs
[
'kernel_initializer'
]
=
tf_utils
.
clone_initializer
(
conv_kwargs
[
'kernel_initializer'
])
self
.
_convs
.
append
(
conv_op
(
name
=
conv_name
,
**
conv_kwargs
))
self
.
_convs
.
append
(
conv_op
(
name
=
conv_name
,
**
conv_kwargs
))
bn_name
=
'detection-conv-bn_{}'
.
format
(
i
)
bn_name
=
'detection-conv-bn_{}'
.
format
(
i
)
self
.
_conv_norms
.
append
(
bn_op
(
name
=
bn_name
,
**
bn_kwargs
))
self
.
_conv_norms
.
append
(
bn_op
(
name
=
bn_name
,
**
bn_kwargs
))
...
@@ -324,6 +327,11 @@ class MaskHead(tf.keras.layers.Layer):
...
@@ -324,6 +327,11 @@ class MaskHead(tf.keras.layers.Layer):
self
.
_conv_norms
=
[]
self
.
_conv_norms
=
[]
for
i
in
range
(
self
.
_config_dict
[
'num_convs'
]):
for
i
in
range
(
self
.
_config_dict
[
'num_convs'
]):
conv_name
=
'mask-conv_{}'
.
format
(
i
)
conv_name
=
'mask-conv_{}'
.
format
(
i
)
for
initializer_name
in
[
'kernel_initializer'
,
'depthwise_initializer'
,
'pointwise_initializer'
]:
if
initializer_name
in
conv_kwargs
:
conv_kwargs
[
initializer_name
]
=
tf_utils
.
clone_initializer
(
conv_kwargs
[
initializer_name
])
self
.
_convs
.
append
(
conv_op
(
name
=
conv_name
,
**
conv_kwargs
))
self
.
_convs
.
append
(
conv_op
(
name
=
conv_name
,
**
conv_kwargs
))
bn_name
=
'mask-conv-bn_{}'
.
format
(
i
)
bn_name
=
'mask-conv-bn_{}'
.
format
(
i
)
self
.
_conv_norms
.
append
(
bn_op
(
name
=
bn_name
,
**
bn_kwargs
))
self
.
_conv_norms
.
append
(
bn_op
(
name
=
bn_name
,
**
bn_kwargs
))
...
...
official/vision/modeling/heads/segmentation_heads.py
View file @
65174bdc
...
@@ -118,6 +118,9 @@ class MaskScoring(tf.keras.Model):
...
@@ -118,6 +118,9 @@ class MaskScoring(tf.keras.Model):
self
.
_conv_norms
=
[]
self
.
_conv_norms
=
[]
for
i
in
range
(
self
.
_config_dict
[
'num_convs'
]):
for
i
in
range
(
self
.
_config_dict
[
'num_convs'
]):
conv_name
=
'mask-scoring_{}'
.
format
(
i
)
conv_name
=
'mask-scoring_{}'
.
format
(
i
)
if
'kernel_initializer'
in
conv_kwargs
:
conv_kwargs
[
'kernel_initializer'
]
=
tf_utils
.
clone_initializer
(
conv_kwargs
[
'kernel_initializer'
])
self
.
_convs
.
append
(
conv_op
(
name
=
conv_name
,
**
conv_kwargs
))
self
.
_convs
.
append
(
conv_op
(
name
=
conv_name
,
**
conv_kwargs
))
bn_name
=
'mask-scoring-bn_{}'
.
format
(
i
)
bn_name
=
'mask-scoring-bn_{}'
.
format
(
i
)
self
.
_conv_norms
.
append
(
bn_op
(
name
=
bn_name
,
**
bn_kwargs
))
self
.
_conv_norms
.
append
(
bn_op
(
name
=
bn_name
,
**
bn_kwargs
))
...
@@ -297,15 +300,7 @@ class SegmentationHead(tf.keras.layers.Layer):
...
@@ -297,15 +300,7 @@ class SegmentationHead(tf.keras.layers.Layer):
def
build
(
self
,
input_shape
:
Union
[
tf
.
TensorShape
,
List
[
tf
.
TensorShape
]]):
def
build
(
self
,
input_shape
:
Union
[
tf
.
TensorShape
,
List
[
tf
.
TensorShape
]]):
"""Creates the variables of the segmentation head."""
"""Creates the variables of the segmentation head."""
use_depthwise_convolution
=
self
.
_config_dict
[
'use_depthwise_convolution'
]
use_depthwise_convolution
=
self
.
_config_dict
[
'use_depthwise_convolution'
]
random_initializer
=
tf
.
keras
.
initializers
.
RandomNormal
(
stddev
=
0.01
)
conv_op
=
tf
.
keras
.
layers
.
Conv2D
conv_op
=
tf
.
keras
.
layers
.
Conv2D
conv_kwargs
=
{
'kernel_size'
:
3
if
not
use_depthwise_convolution
else
1
,
'padding'
:
'same'
,
'use_bias'
:
False
,
'kernel_initializer'
:
random_initializer
,
'kernel_regularizer'
:
self
.
_config_dict
[
'kernel_regularizer'
],
}
bn_op
=
(
tf
.
keras
.
layers
.
experimental
.
SyncBatchNormalization
bn_op
=
(
tf
.
keras
.
layers
.
experimental
.
SyncBatchNormalization
if
self
.
_config_dict
[
'use_sync_bn'
]
if
self
.
_config_dict
[
'use_sync_bn'
]
else
tf
.
keras
.
layers
.
BatchNormalization
)
else
tf
.
keras
.
layers
.
BatchNormalization
)
...
@@ -352,7 +347,8 @@ class SegmentationHead(tf.keras.layers.Layer):
...
@@ -352,7 +347,8 @@ class SegmentationHead(tf.keras.layers.Layer):
kernel_size
=
3
,
kernel_size
=
3
,
padding
=
'same'
,
padding
=
'same'
,
use_bias
=
False
,
use_bias
=
False
,
depthwise_initializer
=
random_initializer
,
depthwise_initializer
=
tf
.
keras
.
initializers
.
RandomNormal
(
stddev
=
0.01
),
depthwise_regularizer
=
self
.
_config_dict
[
'kernel_regularizer'
],
depthwise_regularizer
=
self
.
_config_dict
[
'kernel_regularizer'
],
depth_multiplier
=
1
))
depth_multiplier
=
1
))
norm_name
=
'segmentation_head_depthwise_norm_{}'
.
format
(
i
)
norm_name
=
'segmentation_head_depthwise_norm_{}'
.
format
(
i
)
...
@@ -362,7 +358,12 @@ class SegmentationHead(tf.keras.layers.Layer):
...
@@ -362,7 +358,12 @@ class SegmentationHead(tf.keras.layers.Layer):
conv_op
(
conv_op
(
name
=
conv_name
,
name
=
conv_name
,
filters
=
self
.
_config_dict
[
'num_filters'
],
filters
=
self
.
_config_dict
[
'num_filters'
],
**
conv_kwargs
))
kernel_size
=
3
if
not
use_depthwise_convolution
else
1
,
padding
=
'same'
,
use_bias
=
False
,
kernel_initializer
=
tf
.
keras
.
initializers
.
RandomNormal
(
stddev
=
0.01
),
kernel_regularizer
=
self
.
_config_dict
[
'kernel_regularizer'
]))
norm_name
=
'segmentation_head_norm_{}'
.
format
(
i
)
norm_name
=
'segmentation_head_norm_{}'
.
format
(
i
)
self
.
_norms
.
append
(
bn_op
(
name
=
norm_name
,
**
bn_kwargs
))
self
.
_norms
.
append
(
bn_op
(
name
=
norm_name
,
**
bn_kwargs
))
...
...
official/vision/modeling/layers/deeplab.py
View file @
65174bdc
...
@@ -16,6 +16,8 @@
...
@@ -16,6 +16,8 @@
import
tensorflow
as
tf
import
tensorflow
as
tf
from
official.modeling
import
tf_utils
class
SpatialPyramidPooling
(
tf
.
keras
.
layers
.
Layer
):
class
SpatialPyramidPooling
(
tf
.
keras
.
layers
.
Layer
):
"""Implements the Atrous Spatial Pyramid Pooling.
"""Implements the Atrous Spatial Pyramid Pooling.
...
@@ -103,8 +105,10 @@ class SpatialPyramidPooling(tf.keras.layers.Layer):
...
@@ -103,8 +105,10 @@ class SpatialPyramidPooling(tf.keras.layers.Layer):
conv_sequential
=
tf
.
keras
.
Sequential
([
conv_sequential
=
tf
.
keras
.
Sequential
([
tf
.
keras
.
layers
.
Conv2D
(
tf
.
keras
.
layers
.
Conv2D
(
filters
=
self
.
output_channels
,
kernel_size
=
(
1
,
1
),
filters
=
self
.
output_channels
,
kernel_initializer
=
self
.
kernel_initializer
,
kernel_size
=
(
1
,
1
),
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
kernel_initializer
),
kernel_regularizer
=
self
.
kernel_regularizer
,
kernel_regularizer
=
self
.
kernel_regularizer
,
use_bias
=
False
),
use_bias
=
False
),
bn_op
(
bn_op
(
...
@@ -121,21 +125,32 @@ class SpatialPyramidPooling(tf.keras.layers.Layer):
...
@@ -121,21 +125,32 @@ class SpatialPyramidPooling(tf.keras.layers.Layer):
if
self
.
use_depthwise_convolution
:
if
self
.
use_depthwise_convolution
:
leading_layers
+=
[
leading_layers
+=
[
tf
.
keras
.
layers
.
DepthwiseConv2D
(
tf
.
keras
.
layers
.
DepthwiseConv2D
(
depth_multiplier
=
1
,
kernel_size
=
kernel_size
,
depth_multiplier
=
1
,
padding
=
'same'
,
depthwise_regularizer
=
self
.
kernel_regularizer
,
kernel_size
=
kernel_size
,
depthwise_initializer
=
self
.
kernel_initializer
,
padding
=
'same'
,
dilation_rate
=
dilation_rate
,
use_bias
=
False
)
depthwise_regularizer
=
self
.
kernel_regularizer
,
depthwise_initializer
=
tf_utils
.
clone_initializer
(
self
.
kernel_initializer
),
dilation_rate
=
dilation_rate
,
use_bias
=
False
)
]
]
kernel_size
=
(
1
,
1
)
kernel_size
=
(
1
,
1
)
conv_sequential
=
tf
.
keras
.
Sequential
(
leading_layers
+
[
conv_sequential
=
tf
.
keras
.
Sequential
(
leading_layers
+
[
tf
.
keras
.
layers
.
Conv2D
(
tf
.
keras
.
layers
.
Conv2D
(
filters
=
self
.
output_channels
,
kernel_size
=
kernel_size
,
filters
=
self
.
output_channels
,
padding
=
'same'
,
kernel_regularizer
=
self
.
kernel_regularizer
,
kernel_size
=
kernel_size
,
kernel_initializer
=
self
.
kernel_initializer
,
padding
=
'same'
,
dilation_rate
=
dilation_rate
,
use_bias
=
False
),
kernel_regularizer
=
self
.
kernel_regularizer
,
bn_op
(
axis
=
bn_axis
,
momentum
=
self
.
batchnorm_momentum
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
epsilon
=
self
.
batchnorm_epsilon
),
self
.
kernel_initializer
),
tf
.
keras
.
layers
.
Activation
(
self
.
activation
)])
dilation_rate
=
dilation_rate
,
use_bias
=
False
),
bn_op
(
axis
=
bn_axis
,
momentum
=
self
.
batchnorm_momentum
,
epsilon
=
self
.
batchnorm_epsilon
),
tf
.
keras
.
layers
.
Activation
(
self
.
activation
)
])
self
.
aspp_layers
.
append
(
conv_sequential
)
self
.
aspp_layers
.
append
(
conv_sequential
)
if
self
.
pool_kernel_size
is
None
:
if
self
.
pool_kernel_size
is
None
:
...
@@ -151,7 +166,8 @@ class SpatialPyramidPooling(tf.keras.layers.Layer):
...
@@ -151,7 +166,8 @@ class SpatialPyramidPooling(tf.keras.layers.Layer):
tf
.
keras
.
layers
.
Conv2D
(
tf
.
keras
.
layers
.
Conv2D
(
filters
=
self
.
output_channels
,
filters
=
self
.
output_channels
,
kernel_size
=
(
1
,
1
),
kernel_size
=
(
1
,
1
),
kernel_initializer
=
self
.
kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
kernel_initializer
),
kernel_regularizer
=
self
.
kernel_regularizer
,
kernel_regularizer
=
self
.
kernel_regularizer
,
use_bias
=
False
),
use_bias
=
False
),
bn_op
(
bn_op
(
...
@@ -170,8 +186,10 @@ class SpatialPyramidPooling(tf.keras.layers.Layer):
...
@@ -170,8 +186,10 @@ class SpatialPyramidPooling(tf.keras.layers.Layer):
self
.
projection
=
tf
.
keras
.
Sequential
([
self
.
projection
=
tf
.
keras
.
Sequential
([
tf
.
keras
.
layers
.
Conv2D
(
tf
.
keras
.
layers
.
Conv2D
(
filters
=
self
.
output_channels
,
kernel_size
=
(
1
,
1
),
filters
=
self
.
output_channels
,
kernel_initializer
=
self
.
kernel_initializer
,
kernel_size
=
(
1
,
1
),
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
kernel_initializer
),
kernel_regularizer
=
self
.
kernel_regularizer
,
kernel_regularizer
=
self
.
kernel_regularizer
,
use_bias
=
False
),
use_bias
=
False
),
bn_op
(
bn_op
(
...
@@ -179,7 +197,8 @@ class SpatialPyramidPooling(tf.keras.layers.Layer):
...
@@ -179,7 +197,8 @@ class SpatialPyramidPooling(tf.keras.layers.Layer):
momentum
=
self
.
batchnorm_momentum
,
momentum
=
self
.
batchnorm_momentum
,
epsilon
=
self
.
batchnorm_epsilon
),
epsilon
=
self
.
batchnorm_epsilon
),
tf
.
keras
.
layers
.
Activation
(
self
.
activation
),
tf
.
keras
.
layers
.
Activation
(
self
.
activation
),
tf
.
keras
.
layers
.
Dropout
(
rate
=
self
.
dropout
)])
tf
.
keras
.
layers
.
Dropout
(
rate
=
self
.
dropout
)
])
def
call
(
self
,
inputs
,
training
=
None
):
def
call
(
self
,
inputs
,
training
=
None
):
if
training
is
None
:
if
training
is
None
:
...
...
official/vision/modeling/layers/nn_blocks.py
View file @
65174bdc
...
@@ -141,7 +141,8 @@ class ResidualBlock(tf.keras.layers.Layer):
...
@@ -141,7 +141,8 @@ class ResidualBlock(tf.keras.layers.Layer):
kernel_size
=
1
,
kernel_size
=
1
,
strides
=
self
.
_strides
,
strides
=
self
.
_strides
,
use_bias
=
False
,
use_bias
=
False
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
),
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
)
bias_regularizer
=
self
.
_bias_regularizer
)
self
.
_norm0
=
self
.
_norm
(
self
.
_norm0
=
self
.
_norm
(
...
@@ -162,7 +163,7 @@ class ResidualBlock(tf.keras.layers.Layer):
...
@@ -162,7 +163,7 @@ class ResidualBlock(tf.keras.layers.Layer):
strides
=
self
.
_strides
,
strides
=
self
.
_strides
,
padding
=
conv1_padding
,
padding
=
conv1_padding
,
use_bias
=
False
,
use_bias
=
False
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
)
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
)
bias_regularizer
=
self
.
_bias_regularizer
)
self
.
_norm1
=
self
.
_norm
(
self
.
_norm1
=
self
.
_norm
(
...
@@ -177,7 +178,7 @@ class ResidualBlock(tf.keras.layers.Layer):
...
@@ -177,7 +178,7 @@ class ResidualBlock(tf.keras.layers.Layer):
strides
=
1
,
strides
=
1
,
padding
=
'same'
,
padding
=
'same'
,
use_bias
=
False
,
use_bias
=
False
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
)
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
)
bias_regularizer
=
self
.
_bias_regularizer
)
self
.
_norm2
=
self
.
_norm
(
self
.
_norm2
=
self
.
_norm
(
...
@@ -191,7 +192,8 @@ class ResidualBlock(tf.keras.layers.Layer):
...
@@ -191,7 +192,8 @@ class ResidualBlock(tf.keras.layers.Layer):
in_filters
=
self
.
_filters
,
in_filters
=
self
.
_filters
,
out_filters
=
self
.
_filters
,
out_filters
=
self
.
_filters
,
se_ratio
=
self
.
_se_ratio
,
se_ratio
=
self
.
_se_ratio
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
),
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
)
bias_regularizer
=
self
.
_bias_regularizer
)
else
:
else
:
...
@@ -338,7 +340,8 @@ class BottleneckBlock(tf.keras.layers.Layer):
...
@@ -338,7 +340,8 @@ class BottleneckBlock(tf.keras.layers.Layer):
kernel_size
=
1
,
kernel_size
=
1
,
strides
=
1
,
strides
=
1
,
use_bias
=
False
,
use_bias
=
False
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
),
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
)
bias_regularizer
=
self
.
_bias_regularizer
)
else
:
else
:
...
@@ -347,7 +350,8 @@ class BottleneckBlock(tf.keras.layers.Layer):
...
@@ -347,7 +350,8 @@ class BottleneckBlock(tf.keras.layers.Layer):
kernel_size
=
1
,
kernel_size
=
1
,
strides
=
self
.
_strides
,
strides
=
self
.
_strides
,
use_bias
=
False
,
use_bias
=
False
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
),
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
)
bias_regularizer
=
self
.
_bias_regularizer
)
...
@@ -362,7 +366,7 @@ class BottleneckBlock(tf.keras.layers.Layer):
...
@@ -362,7 +366,7 @@ class BottleneckBlock(tf.keras.layers.Layer):
kernel_size
=
1
,
kernel_size
=
1
,
strides
=
1
,
strides
=
1
,
use_bias
=
False
,
use_bias
=
False
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
)
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
)
bias_regularizer
=
self
.
_bias_regularizer
)
self
.
_norm1
=
self
.
_norm
(
self
.
_norm1
=
self
.
_norm
(
...
@@ -380,7 +384,7 @@ class BottleneckBlock(tf.keras.layers.Layer):
...
@@ -380,7 +384,7 @@ class BottleneckBlock(tf.keras.layers.Layer):
dilation_rate
=
self
.
_dilation_rate
,
dilation_rate
=
self
.
_dilation_rate
,
padding
=
'same'
,
padding
=
'same'
,
use_bias
=
False
,
use_bias
=
False
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
)
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
)
bias_regularizer
=
self
.
_bias_regularizer
)
self
.
_norm2
=
self
.
_norm
(
self
.
_norm2
=
self
.
_norm
(
...
@@ -396,7 +400,7 @@ class BottleneckBlock(tf.keras.layers.Layer):
...
@@ -396,7 +400,7 @@ class BottleneckBlock(tf.keras.layers.Layer):
kernel_size
=
1
,
kernel_size
=
1
,
strides
=
1
,
strides
=
1
,
use_bias
=
False
,
use_bias
=
False
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
)
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
)
bias_regularizer
=
self
.
_bias_regularizer
)
self
.
_norm3
=
self
.
_norm
(
self
.
_norm3
=
self
.
_norm
(
...
@@ -412,7 +416,8 @@ class BottleneckBlock(tf.keras.layers.Layer):
...
@@ -412,7 +416,8 @@ class BottleneckBlock(tf.keras.layers.Layer):
in_filters
=
self
.
_filters
*
4
,
in_filters
=
self
.
_filters
*
4
,
out_filters
=
self
.
_filters
*
4
,
out_filters
=
self
.
_filters
*
4
,
se_ratio
=
self
.
_se_ratio
,
se_ratio
=
self
.
_se_ratio
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
),
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
)
bias_regularizer
=
self
.
_bias_regularizer
)
else
:
else
:
...
@@ -616,7 +621,8 @@ class InvertedBottleneckBlock(tf.keras.layers.Layer):
...
@@ -616,7 +621,8 @@ class InvertedBottleneckBlock(tf.keras.layers.Layer):
strides
=
expand_stride
,
strides
=
expand_stride
,
padding
=
'same'
,
padding
=
'same'
,
use_bias
=
False
,
use_bias
=
False
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
),
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
)
bias_regularizer
=
self
.
_bias_regularizer
)
self
.
_norm0
=
self
.
_norm
(
self
.
_norm0
=
self
.
_norm
(
...
@@ -635,7 +641,8 @@ class InvertedBottleneckBlock(tf.keras.layers.Layer):
...
@@ -635,7 +641,8 @@ class InvertedBottleneckBlock(tf.keras.layers.Layer):
depth_multiplier
=
1
,
depth_multiplier
=
1
,
dilation_rate
=
self
.
_dilation_rate
,
dilation_rate
=
self
.
_dilation_rate
,
use_bias
=
False
,
use_bias
=
False
,
depthwise_initializer
=
self
.
_kernel_initializer
,
depthwise_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
),
depthwise_regularizer
=
self
.
_depthsize_regularizer
,
depthwise_regularizer
=
self
.
_depthsize_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
)
bias_regularizer
=
self
.
_bias_regularizer
)
self
.
_norm1
=
self
.
_norm
(
self
.
_norm1
=
self
.
_norm
(
...
@@ -657,7 +664,8 @@ class InvertedBottleneckBlock(tf.keras.layers.Layer):
...
@@ -657,7 +664,8 @@ class InvertedBottleneckBlock(tf.keras.layers.Layer):
se_ratio
=
self
.
_se_ratio
,
se_ratio
=
self
.
_se_ratio
,
divisible_by
=
self
.
_divisible_by
,
divisible_by
=
self
.
_divisible_by
,
round_down_protect
=
self
.
_se_round_down_protect
,
round_down_protect
=
self
.
_se_round_down_protect
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
),
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
,
activation
=
self
.
_se_inner_activation
,
activation
=
self
.
_se_inner_activation
,
...
@@ -672,7 +680,7 @@ class InvertedBottleneckBlock(tf.keras.layers.Layer):
...
@@ -672,7 +680,7 @@ class InvertedBottleneckBlock(tf.keras.layers.Layer):
strides
=
1
,
strides
=
1
,
padding
=
'same'
,
padding
=
'same'
,
use_bias
=
False
,
use_bias
=
False
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
)
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
)
bias_regularizer
=
self
.
_bias_regularizer
)
self
.
_norm2
=
self
.
_norm
(
self
.
_norm2
=
self
.
_norm
(
...
@@ -829,7 +837,7 @@ class ResidualInner(tf.keras.layers.Layer):
...
@@ -829,7 +837,7 @@ class ResidualInner(tf.keras.layers.Layer):
strides
=
self
.
strides
,
strides
=
self
.
strides
,
use_bias
=
False
,
use_bias
=
False
,
padding
=
'same'
,
padding
=
'same'
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
)
,
kernel_regularizer
=
self
.
_kernel_regularizer
)
kernel_regularizer
=
self
.
_kernel_regularizer
)
self
.
_batch_norm_1
=
self
.
_norm
(
self
.
_batch_norm_1
=
self
.
_norm
(
...
@@ -843,7 +851,7 @@ class ResidualInner(tf.keras.layers.Layer):
...
@@ -843,7 +851,7 @@ class ResidualInner(tf.keras.layers.Layer):
strides
=
1
,
strides
=
1
,
use_bias
=
False
,
use_bias
=
False
,
padding
=
'same'
,
padding
=
'same'
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
)
,
kernel_regularizer
=
self
.
_kernel_regularizer
)
kernel_regularizer
=
self
.
_kernel_regularizer
)
super
(
ResidualInner
,
self
).
build
(
input_shape
)
super
(
ResidualInner
,
self
).
build
(
input_shape
)
...
@@ -954,7 +962,7 @@ class BottleneckResidualInner(tf.keras.layers.Layer):
...
@@ -954,7 +962,7 @@ class BottleneckResidualInner(tf.keras.layers.Layer):
strides
=
self
.
strides
,
strides
=
self
.
strides
,
use_bias
=
False
,
use_bias
=
False
,
padding
=
'same'
,
padding
=
'same'
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
)
,
kernel_regularizer
=
self
.
_kernel_regularizer
)
kernel_regularizer
=
self
.
_kernel_regularizer
)
self
.
_batch_norm_1
=
self
.
_norm
(
self
.
_batch_norm_1
=
self
.
_norm
(
axis
=
self
.
_bn_axis
,
axis
=
self
.
_bn_axis
,
...
@@ -966,7 +974,7 @@ class BottleneckResidualInner(tf.keras.layers.Layer):
...
@@ -966,7 +974,7 @@ class BottleneckResidualInner(tf.keras.layers.Layer):
strides
=
1
,
strides
=
1
,
use_bias
=
False
,
use_bias
=
False
,
padding
=
'same'
,
padding
=
'same'
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
)
,
kernel_regularizer
=
self
.
_kernel_regularizer
)
kernel_regularizer
=
self
.
_kernel_regularizer
)
self
.
_batch_norm_2
=
self
.
_norm
(
self
.
_batch_norm_2
=
self
.
_norm
(
axis
=
self
.
_bn_axis
,
axis
=
self
.
_bn_axis
,
...
@@ -978,7 +986,7 @@ class BottleneckResidualInner(tf.keras.layers.Layer):
...
@@ -978,7 +986,7 @@ class BottleneckResidualInner(tf.keras.layers.Layer):
strides
=
1
,
strides
=
1
,
use_bias
=
False
,
use_bias
=
False
,
padding
=
'same'
,
padding
=
'same'
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
)
,
kernel_regularizer
=
self
.
_kernel_regularizer
)
kernel_regularizer
=
self
.
_kernel_regularizer
)
super
(
BottleneckResidualInner
,
self
).
build
(
input_shape
)
super
(
BottleneckResidualInner
,
self
).
build
(
input_shape
)
...
@@ -1286,7 +1294,7 @@ class DepthwiseSeparableConvBlock(tf.keras.layers.Layer):
...
@@ -1286,7 +1294,7 @@ class DepthwiseSeparableConvBlock(tf.keras.layers.Layer):
padding
=
'same'
,
padding
=
'same'
,
depth_multiplier
=
1
,
depth_multiplier
=
1
,
dilation_rate
=
self
.
_dilation_rate
,
dilation_rate
=
self
.
_dilation_rate
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
)
,
kernel_regularizer
=
self
.
_depthsize_regularizer
,
kernel_regularizer
=
self
.
_depthsize_regularizer
,
use_bias
=
False
)
use_bias
=
False
)
self
.
_norm0
=
self
.
_norm
(
self
.
_norm0
=
self
.
_norm
(
...
@@ -1300,7 +1308,7 @@ class DepthwiseSeparableConvBlock(tf.keras.layers.Layer):
...
@@ -1300,7 +1308,7 @@ class DepthwiseSeparableConvBlock(tf.keras.layers.Layer):
strides
=
1
,
strides
=
1
,
padding
=
'same'
,
padding
=
'same'
,
use_bias
=
False
,
use_bias
=
False
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
)
,
kernel_regularizer
=
self
.
_kernel_regularizer
)
kernel_regularizer
=
self
.
_kernel_regularizer
)
self
.
_norm1
=
self
.
_norm
(
self
.
_norm1
=
self
.
_norm
(
axis
=
self
.
_bn_axis
,
axis
=
self
.
_bn_axis
,
...
@@ -1411,7 +1419,7 @@ class TuckerConvBlock(tf.keras.layers.Layer):
...
@@ -1411,7 +1419,7 @@ class TuckerConvBlock(tf.keras.layers.Layer):
strides
=
1
,
strides
=
1
,
padding
=
'same'
,
padding
=
'same'
,
use_bias
=
False
,
use_bias
=
False
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
)
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
)
bias_regularizer
=
self
.
_bias_regularizer
)
self
.
_norm0
=
self
.
_norm
(
self
.
_norm0
=
self
.
_norm
(
...
@@ -1432,7 +1440,7 @@ class TuckerConvBlock(tf.keras.layers.Layer):
...
@@ -1432,7 +1440,7 @@ class TuckerConvBlock(tf.keras.layers.Layer):
strides
=
self
.
_strides
,
strides
=
self
.
_strides
,
padding
=
'same'
,
padding
=
'same'
,
use_bias
=
False
,
use_bias
=
False
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
)
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
)
bias_regularizer
=
self
.
_bias_regularizer
)
self
.
_norm1
=
self
.
_norm
(
self
.
_norm1
=
self
.
_norm
(
...
@@ -1449,7 +1457,7 @@ class TuckerConvBlock(tf.keras.layers.Layer):
...
@@ -1449,7 +1457,7 @@ class TuckerConvBlock(tf.keras.layers.Layer):
strides
=
1
,
strides
=
1
,
padding
=
'same'
,
padding
=
'same'
,
use_bias
=
False
,
use_bias
=
False
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
)
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
)
bias_regularizer
=
self
.
_bias_regularizer
)
self
.
_norm2
=
self
.
_norm
(
self
.
_norm2
=
self
.
_norm
(
...
...
official/vision/modeling/layers/nn_blocks_3d.py
View file @
65174bdc
...
@@ -155,7 +155,7 @@ class BottleneckBlock3D(tf.keras.layers.Layer):
...
@@ -155,7 +155,7 @@ class BottleneckBlock3D(tf.keras.layers.Layer):
self
.
_temporal_strides
,
self
.
_spatial_strides
,
self
.
_spatial_strides
self
.
_temporal_strides
,
self
.
_spatial_strides
,
self
.
_spatial_strides
],
],
use_bias
=
False
,
use_bias
=
False
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
)
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
)
bias_regularizer
=
self
.
_bias_regularizer
)
self
.
_norm0
=
self
.
_norm
(
self
.
_norm0
=
self
.
_norm
(
...
@@ -169,7 +169,7 @@ class BottleneckBlock3D(tf.keras.layers.Layer):
...
@@ -169,7 +169,7 @@ class BottleneckBlock3D(tf.keras.layers.Layer):
strides
=
[
self
.
_temporal_strides
,
1
,
1
],
strides
=
[
self
.
_temporal_strides
,
1
,
1
],
padding
=
'same'
,
padding
=
'same'
,
use_bias
=
False
,
use_bias
=
False
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
)
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
)
bias_regularizer
=
self
.
_bias_regularizer
)
self
.
_norm1
=
self
.
_norm
(
self
.
_norm1
=
self
.
_norm
(
...
@@ -183,7 +183,7 @@ class BottleneckBlock3D(tf.keras.layers.Layer):
...
@@ -183,7 +183,7 @@ class BottleneckBlock3D(tf.keras.layers.Layer):
strides
=
[
1
,
self
.
_spatial_strides
,
self
.
_spatial_strides
],
strides
=
[
1
,
self
.
_spatial_strides
,
self
.
_spatial_strides
],
padding
=
'same'
,
padding
=
'same'
,
use_bias
=
False
,
use_bias
=
False
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
)
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
)
bias_regularizer
=
self
.
_bias_regularizer
)
self
.
_norm2
=
self
.
_norm
(
self
.
_norm2
=
self
.
_norm
(
...
@@ -197,7 +197,7 @@ class BottleneckBlock3D(tf.keras.layers.Layer):
...
@@ -197,7 +197,7 @@ class BottleneckBlock3D(tf.keras.layers.Layer):
strides
=
[
1
,
1
,
1
],
strides
=
[
1
,
1
,
1
],
padding
=
'same'
,
padding
=
'same'
,
use_bias
=
False
,
use_bias
=
False
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
)
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
)
bias_regularizer
=
self
.
_bias_regularizer
)
self
.
_norm3
=
self
.
_norm
(
self
.
_norm3
=
self
.
_norm
(
...
@@ -211,7 +211,8 @@ class BottleneckBlock3D(tf.keras.layers.Layer):
...
@@ -211,7 +211,8 @@ class BottleneckBlock3D(tf.keras.layers.Layer):
out_filters
=
self
.
_filters
*
4
,
out_filters
=
self
.
_filters
*
4
,
se_ratio
=
self
.
_se_ratio
,
se_ratio
=
self
.
_se_ratio
,
use_3d_input
=
True
,
use_3d_input
=
True
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
),
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
)
bias_regularizer
=
self
.
_bias_regularizer
)
else
:
else
:
...
...
official/vision/modeling/layers/nn_layers.py
View file @
65174bdc
...
@@ -163,7 +163,7 @@ class SqueezeExcitation(tf.keras.layers.Layer):
...
@@ -163,7 +163,7 @@ class SqueezeExcitation(tf.keras.layers.Layer):
strides
=
1
,
strides
=
1
,
padding
=
'same'
,
padding
=
'same'
,
use_bias
=
True
,
use_bias
=
True
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
)
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
)
bias_regularizer
=
self
.
_bias_regularizer
)
...
@@ -173,7 +173,7 @@ class SqueezeExcitation(tf.keras.layers.Layer):
...
@@ -173,7 +173,7 @@ class SqueezeExcitation(tf.keras.layers.Layer):
strides
=
1
,
strides
=
1
,
padding
=
'same'
,
padding
=
'same'
,
use_bias
=
True
,
use_bias
=
True
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
)
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
)
bias_regularizer
=
self
.
_bias_regularizer
)
...
@@ -1155,7 +1155,7 @@ class SpatialPyramidPooling(tf.keras.layers.Layer):
...
@@ -1155,7 +1155,7 @@ class SpatialPyramidPooling(tf.keras.layers.Layer):
conv1
=
tf
.
keras
.
layers
.
Conv2D
(
conv1
=
tf
.
keras
.
layers
.
Conv2D
(
filters
=
self
.
_output_channels
,
filters
=
self
.
_output_channels
,
kernel_size
=
(
1
,
1
),
kernel_size
=
(
1
,
1
),
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
)
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
use_bias
=
False
)
use_bias
=
False
)
norm1
=
self
.
_bn_op
(
norm1
=
self
.
_bn_op
(
...
@@ -1175,7 +1175,8 @@ class SpatialPyramidPooling(tf.keras.layers.Layer):
...
@@ -1175,7 +1175,8 @@ class SpatialPyramidPooling(tf.keras.layers.Layer):
kernel_size
=
kernel_size
,
kernel_size
=
kernel_size
,
padding
=
'same'
,
padding
=
'same'
,
depthwise_regularizer
=
self
.
_kernel_regularizer
,
depthwise_regularizer
=
self
.
_kernel_regularizer
,
depthwise_initializer
=
self
.
_kernel_initializer
,
depthwise_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
),
dilation_rate
=
dilation_rate
,
dilation_rate
=
dilation_rate
,
use_bias
=
False
)
use_bias
=
False
)
]
]
...
@@ -1186,7 +1187,8 @@ class SpatialPyramidPooling(tf.keras.layers.Layer):
...
@@ -1186,7 +1187,8 @@ class SpatialPyramidPooling(tf.keras.layers.Layer):
kernel_size
=
kernel_size
,
kernel_size
=
kernel_size
,
padding
=
'same'
,
padding
=
'same'
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
),
dilation_rate
=
dilation_rate
,
dilation_rate
=
dilation_rate
,
use_bias
=
False
)
use_bias
=
False
)
]
]
...
@@ -1208,7 +1210,7 @@ class SpatialPyramidPooling(tf.keras.layers.Layer):
...
@@ -1208,7 +1210,7 @@ class SpatialPyramidPooling(tf.keras.layers.Layer):
conv2
=
tf
.
keras
.
layers
.
Conv2D
(
conv2
=
tf
.
keras
.
layers
.
Conv2D
(
filters
=
self
.
_output_channels
,
filters
=
self
.
_output_channels
,
kernel_size
=
(
1
,
1
),
kernel_size
=
(
1
,
1
),
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
)
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
use_bias
=
False
)
use_bias
=
False
)
norm2
=
self
.
_bn_op
(
norm2
=
self
.
_bn_op
(
...
@@ -1225,7 +1227,8 @@ class SpatialPyramidPooling(tf.keras.layers.Layer):
...
@@ -1225,7 +1227,8 @@ class SpatialPyramidPooling(tf.keras.layers.Layer):
tf
.
keras
.
layers
.
Conv2D
(
tf
.
keras
.
layers
.
Conv2D
(
filters
=
self
.
_output_channels
,
filters
=
self
.
_output_channels
,
kernel_size
=
(
1
,
1
),
kernel_size
=
(
1
,
1
),
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
),
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
use_bias
=
False
),
use_bias
=
False
),
self
.
_bn_op
(
self
.
_bn_op
(
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment