Commit 62cea658 authored by Mostafa Rahmani's avatar Mostafa Rahmani Committed by GitHub
Browse files

Update cifar10.py

bug fix for contrib.deprecated eliminatation in tf version 12.
parent bb5798c7
...@@ -91,8 +91,8 @@ def _activation_summary(x): ...@@ -91,8 +91,8 @@ def _activation_summary(x):
# Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
# session. This helps the clarity of presentation on tensorboard. # session. This helps the clarity of presentation on tensorboard.
tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name) tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
tf.contrib.deprecated.histogram_summary(tensor_name + '/activations', x) tf.histogram_summary(tensor_name + '/activations', x)
tf.contrib.deprecated.scalar_summary(tensor_name + '/sparsity', tf.scalar_summary(tensor_name + '/sparsity',
tf.nn.zero_fraction(x)) tf.nn.zero_fraction(x))
...@@ -317,8 +317,8 @@ def _add_loss_summaries(total_loss): ...@@ -317,8 +317,8 @@ def _add_loss_summaries(total_loss):
for l in losses + [total_loss]: for l in losses + [total_loss]:
# Name each loss as '(raw)' and name the moving average version of the loss # Name each loss as '(raw)' and name the moving average version of the loss
# as the original loss name. # as the original loss name.
tf.contrib.deprecated.scalar_summary(l.op.name + ' (raw)', l) tf.scalar_summary(l.op.name + ' (raw)', l)
tf.contrib.deprecated.scalar_summary(l.op.name, loss_averages.average(l)) tf.scalar_summary(l.op.name, loss_averages.average(l))
return loss_averages_op return loss_averages_op
...@@ -346,7 +346,7 @@ def train(total_loss, global_step): ...@@ -346,7 +346,7 @@ def train(total_loss, global_step):
decay_steps, decay_steps,
LEARNING_RATE_DECAY_FACTOR, LEARNING_RATE_DECAY_FACTOR,
staircase=True) staircase=True)
tf.contrib.deprecated.scalar_summary('learning_rate', lr) tf.scalar_summary('learning_rate', lr)
# Generate moving averages of all losses and associated summaries. # Generate moving averages of all losses and associated summaries.
loss_averages_op = _add_loss_summaries(total_loss) loss_averages_op = _add_loss_summaries(total_loss)
...@@ -361,12 +361,12 @@ def train(total_loss, global_step): ...@@ -361,12 +361,12 @@ def train(total_loss, global_step):
# Add histograms for trainable variables. # Add histograms for trainable variables.
for var in tf.trainable_variables(): for var in tf.trainable_variables():
tf.contrib.deprecated.histogram_summary(var.op.name, var) tf.histogram_summary(var.op.name, var)
# Add histograms for gradients. # Add histograms for gradients.
for grad, var in grads: for grad, var in grads:
if grad is not None: if grad is not None:
tf.contrib.deprecated.histogram_summary(var.op.name + '/gradients', grad) tf.histogram_summary(var.op.name + '/gradients', grad)
# Track the moving averages of all trainable variables. # Track the moving averages of all trainable variables.
variable_averages = tf.train.ExponentialMovingAverage( variable_averages = tf.train.ExponentialMovingAverage(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment