Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
6024579b
Commit
6024579b
authored
Sep 05, 2017
by
Jonathan Huang
Committed by
GitHub
Sep 05, 2017
Browse files
Merge pull request #2342 from derekjchow/master
Add MSCOCO config templates.
parents
5db19735
99e31962
Changes
7
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
1112 additions
and
0 deletions
+1112
-0
object_detection/samples/configs/faster_rcnn_inception_resnet_v2_atrous_coco.config
...onfigs/faster_rcnn_inception_resnet_v2_atrous_coco.config
+147
-0
object_detection/samples/configs/faster_rcnn_resnet101_coco.config
...tection/samples/configs/faster_rcnn_resnet101_coco.config
+145
-0
object_detection/samples/configs/faster_rcnn_resnet152_coco.config
...tection/samples/configs/faster_rcnn_resnet152_coco.config
+145
-0
object_detection/samples/configs/faster_rcnn_resnet50_coco.config
...etection/samples/configs/faster_rcnn_resnet50_coco.config
+145
-0
object_detection/samples/configs/rfcn_resnet101_coco.config
object_detection/samples/configs/rfcn_resnet101_coco.config
+142
-0
object_detection/samples/configs/ssd_inception_v2_coco.config
...ct_detection/samples/configs/ssd_inception_v2_coco.config
+191
-0
object_detection/samples/configs/ssd_mobilenet_v1_coco.config
...ct_detection/samples/configs/ssd_mobilenet_v1_coco.config
+197
-0
No files found.
object_detection/samples/configs/faster_rcnn_inception_resnet_v2_atrous_coco.config
0 → 100644
View file @
6024579b
# Faster R-CNN with Inception Resnet v2, Atrous version;
# Configured for MSCOCO Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.
model
{
faster_rcnn
{
num_classes
:
90
image_resizer
{
keep_aspect_ratio_resizer
{
min_dimension
:
600
max_dimension
:
1024
}
}
feature_extractor
{
type
:
'faster_rcnn_inception_resnet_v2'
first_stage_features_stride
:
8
}
first_stage_anchor_generator
{
grid_anchor_generator
{
scales
: [
0
.
25
,
0
.
5
,
1
.
0
,
2
.
0
]
aspect_ratios
: [
0
.
5
,
1
.
0
,
2
.
0
]
height_stride
:
8
width_stride
:
8
}
}
first_stage_atrous_rate
:
2
first_stage_box_predictor_conv_hyperparams
{
op
:
CONV
regularizer
{
l2_regularizer
{
weight
:
0
.
0
}
}
initializer
{
truncated_normal_initializer
{
stddev
:
0
.
01
}
}
}
first_stage_nms_score_threshold
:
0
.
0
first_stage_nms_iou_threshold
:
0
.
7
first_stage_max_proposals
:
300
first_stage_localization_loss_weight
:
2
.
0
first_stage_objectness_loss_weight
:
1
.
0
initial_crop_size
:
17
maxpool_kernel_size
:
1
maxpool_stride
:
1
second_stage_box_predictor
{
mask_rcnn_box_predictor
{
use_dropout
:
false
dropout_keep_probability
:
1
.
0
fc_hyperparams
{
op
:
FC
regularizer
{
l2_regularizer
{
weight
:
0
.
0
}
}
initializer
{
variance_scaling_initializer
{
factor
:
1
.
0
uniform
:
true
mode
:
FAN_AVG
}
}
}
}
}
second_stage_post_processing
{
batch_non_max_suppression
{
score_threshold
:
0
.
0
iou_threshold
:
0
.
6
max_detections_per_class
:
100
max_total_detections
:
100
}
score_converter
:
SOFTMAX
}
second_stage_localization_loss_weight
:
2
.
0
second_stage_classification_loss_weight
:
1
.
0
}
}
train_config
: {
batch_size
:
1
optimizer
{
momentum_optimizer
: {
learning_rate
: {
manual_step_learning_rate
{
initial_learning_rate
:
0
.
0003
schedule
{
step
:
0
learning_rate
: .
0003
}
schedule
{
step
:
900000
learning_rate
: .
00003
}
schedule
{
step
:
1200000
learning_rate
: .
000003
}
}
}
momentum_optimizer_value
:
0
.
9
}
use_moving_average
:
false
}
gradient_clipping_by_norm
:
10
.
0
fine_tune_checkpoint
:
"PATH_TO_BE_CONFIGURED/model.ckpt"
from_detection_checkpoint
:
true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps
:
200000
data_augmentation_options
{
random_horizontal_flip
{
}
}
}
train_input_reader
: {
tf_record_input_reader
{
input_path
:
"PATH_TO_BE_CONFIGURED/mscoco_train.record"
}
label_map_path
:
"PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
}
eval_config
: {
num_examples
:
8000
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals
:
10
}
eval_input_reader
: {
tf_record_input_reader
{
input_path
:
"PATH_TO_BE_CONFIGURED/mscoco_val.record"
}
label_map_path
:
"PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
shuffle
:
false
num_readers
:
1
num_epochs
:
1
}
object_detection/samples/configs/faster_rcnn_resnet101_coco.config
0 → 100644
View file @
6024579b
# Faster R-CNN with Resnet-101 (v1) configuration for MSCOCO Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.
model
{
faster_rcnn
{
num_classes
:
90
image_resizer
{
keep_aspect_ratio_resizer
{
min_dimension
:
600
max_dimension
:
1024
}
}
feature_extractor
{
type
:
'faster_rcnn_resnet101'
first_stage_features_stride
:
16
}
first_stage_anchor_generator
{
grid_anchor_generator
{
scales
: [
0
.
25
,
0
.
5
,
1
.
0
,
2
.
0
]
aspect_ratios
: [
0
.
5
,
1
.
0
,
2
.
0
]
height_stride
:
16
width_stride
:
16
}
}
first_stage_box_predictor_conv_hyperparams
{
op
:
CONV
regularizer
{
l2_regularizer
{
weight
:
0
.
0
}
}
initializer
{
truncated_normal_initializer
{
stddev
:
0
.
01
}
}
}
first_stage_nms_score_threshold
:
0
.
0
first_stage_nms_iou_threshold
:
0
.
7
first_stage_max_proposals
:
300
first_stage_localization_loss_weight
:
2
.
0
first_stage_objectness_loss_weight
:
1
.
0
initial_crop_size
:
14
maxpool_kernel_size
:
2
maxpool_stride
:
2
second_stage_box_predictor
{
mask_rcnn_box_predictor
{
use_dropout
:
false
dropout_keep_probability
:
1
.
0
fc_hyperparams
{
op
:
FC
regularizer
{
l2_regularizer
{
weight
:
0
.
0
}
}
initializer
{
variance_scaling_initializer
{
factor
:
1
.
0
uniform
:
true
mode
:
FAN_AVG
}
}
}
}
}
second_stage_post_processing
{
batch_non_max_suppression
{
score_threshold
:
0
.
0
iou_threshold
:
0
.
6
max_detections_per_class
:
100
max_total_detections
:
300
}
score_converter
:
SOFTMAX
}
second_stage_localization_loss_weight
:
2
.
0
second_stage_classification_loss_weight
:
1
.
0
}
}
train_config
: {
batch_size
:
1
optimizer
{
momentum_optimizer
: {
learning_rate
: {
manual_step_learning_rate
{
initial_learning_rate
:
0
.
0003
schedule
{
step
:
0
learning_rate
: .
0003
}
schedule
{
step
:
900000
learning_rate
: .
00003
}
schedule
{
step
:
1200000
learning_rate
: .
000003
}
}
}
momentum_optimizer_value
:
0
.
9
}
use_moving_average
:
false
}
gradient_clipping_by_norm
:
10
.
0
fine_tune_checkpoint
:
"PATH_TO_BE_CONFIGURED/model.ckpt"
from_detection_checkpoint
:
true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps
:
200000
data_augmentation_options
{
random_horizontal_flip
{
}
}
}
train_input_reader
: {
tf_record_input_reader
{
input_path
:
"PATH_TO_BE_CONFIGURED/mscoco_train.record"
}
label_map_path
:
"PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
}
eval_config
: {
num_examples
:
8000
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals
:
10
}
eval_input_reader
: {
tf_record_input_reader
{
input_path
:
"PATH_TO_BE_CONFIGURED/mscoco_val.record"
}
label_map_path
:
"PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
shuffle
:
false
num_readers
:
1
num_epochs
:
1
}
object_detection/samples/configs/faster_rcnn_resnet152_coco.config
0 → 100644
View file @
6024579b
# Faster R-CNN with Resnet-152 (v1), configuration for MSCOCO Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.
model
{
faster_rcnn
{
num_classes
:
90
image_resizer
{
keep_aspect_ratio_resizer
{
min_dimension
:
600
max_dimension
:
1024
}
}
feature_extractor
{
type
:
'faster_rcnn_resnet152'
first_stage_features_stride
:
16
}
first_stage_anchor_generator
{
grid_anchor_generator
{
scales
: [
0
.
25
,
0
.
5
,
1
.
0
,
2
.
0
]
aspect_ratios
: [
0
.
5
,
1
.
0
,
2
.
0
]
height_stride
:
16
width_stride
:
16
}
}
first_stage_box_predictor_conv_hyperparams
{
op
:
CONV
regularizer
{
l2_regularizer
{
weight
:
0
.
0
}
}
initializer
{
truncated_normal_initializer
{
stddev
:
0
.
01
}
}
}
first_stage_nms_score_threshold
:
0
.
0
first_stage_nms_iou_threshold
:
0
.
7
first_stage_max_proposals
:
300
first_stage_localization_loss_weight
:
2
.
0
first_stage_objectness_loss_weight
:
1
.
0
initial_crop_size
:
14
maxpool_kernel_size
:
2
maxpool_stride
:
2
second_stage_box_predictor
{
mask_rcnn_box_predictor
{
use_dropout
:
false
dropout_keep_probability
:
1
.
0
fc_hyperparams
{
op
:
FC
regularizer
{
l2_regularizer
{
weight
:
0
.
0
}
}
initializer
{
variance_scaling_initializer
{
factor
:
1
.
0
uniform
:
true
mode
:
FAN_AVG
}
}
}
}
}
second_stage_post_processing
{
batch_non_max_suppression
{
score_threshold
:
0
.
0
iou_threshold
:
0
.
6
max_detections_per_class
:
100
max_total_detections
:
300
}
score_converter
:
SOFTMAX
}
second_stage_localization_loss_weight
:
2
.
0
second_stage_classification_loss_weight
:
1
.
0
}
}
train_config
: {
batch_size
:
1
optimizer
{
momentum_optimizer
: {
learning_rate
: {
manual_step_learning_rate
{
initial_learning_rate
:
0
.
0003
schedule
{
step
:
0
learning_rate
: .
0003
}
schedule
{
step
:
900000
learning_rate
: .
00003
}
schedule
{
step
:
1200000
learning_rate
: .
000003
}
}
}
momentum_optimizer_value
:
0
.
9
}
use_moving_average
:
false
}
gradient_clipping_by_norm
:
10
.
0
fine_tune_checkpoint
:
"PATH_TO_BE_CONFIGURED/model.ckpt"
from_detection_checkpoint
:
true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps
:
200000
data_augmentation_options
{
random_horizontal_flip
{
}
}
}
train_input_reader
: {
tf_record_input_reader
{
input_path
:
"PATH_TO_BE_CONFIGURED/mscoco_train.record"
}
label_map_path
:
"PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
}
eval_config
: {
num_examples
:
8000
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals
:
10
}
eval_input_reader
: {
tf_record_input_reader
{
input_path
:
"PATH_TO_BE_CONFIGURED/mscoco_val.record"
}
label_map_path
:
"PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
shuffle
:
false
num_readers
:
1
num_epochs
:
1
}
object_detection/samples/configs/faster_rcnn_resnet50_coco.config
0 → 100644
View file @
6024579b
# Faster R-CNN with Resnet-50 (v1), configuration for MSCOCO Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.
model
{
faster_rcnn
{
num_classes
:
90
image_resizer
{
keep_aspect_ratio_resizer
{
min_dimension
:
600
max_dimension
:
1024
}
}
feature_extractor
{
type
:
'faster_rcnn_resnet50'
first_stage_features_stride
:
16
}
first_stage_anchor_generator
{
grid_anchor_generator
{
scales
: [
0
.
25
,
0
.
5
,
1
.
0
,
2
.
0
]
aspect_ratios
: [
0
.
5
,
1
.
0
,
2
.
0
]
height_stride
:
16
width_stride
:
16
}
}
first_stage_box_predictor_conv_hyperparams
{
op
:
CONV
regularizer
{
l2_regularizer
{
weight
:
0
.
0
}
}
initializer
{
truncated_normal_initializer
{
stddev
:
0
.
01
}
}
}
first_stage_nms_score_threshold
:
0
.
0
first_stage_nms_iou_threshold
:
0
.
7
first_stage_max_proposals
:
300
first_stage_localization_loss_weight
:
2
.
0
first_stage_objectness_loss_weight
:
1
.
0
initial_crop_size
:
14
maxpool_kernel_size
:
2
maxpool_stride
:
2
second_stage_box_predictor
{
mask_rcnn_box_predictor
{
use_dropout
:
false
dropout_keep_probability
:
1
.
0
fc_hyperparams
{
op
:
FC
regularizer
{
l2_regularizer
{
weight
:
0
.
0
}
}
initializer
{
variance_scaling_initializer
{
factor
:
1
.
0
uniform
:
true
mode
:
FAN_AVG
}
}
}
}
}
second_stage_post_processing
{
batch_non_max_suppression
{
score_threshold
:
0
.
0
iou_threshold
:
0
.
6
max_detections_per_class
:
100
max_total_detections
:
300
}
score_converter
:
SOFTMAX
}
second_stage_localization_loss_weight
:
2
.
0
second_stage_classification_loss_weight
:
1
.
0
}
}
train_config
: {
batch_size
:
1
optimizer
{
momentum_optimizer
: {
learning_rate
: {
manual_step_learning_rate
{
initial_learning_rate
:
0
.
0003
schedule
{
step
:
0
learning_rate
: .
0003
}
schedule
{
step
:
900000
learning_rate
: .
00003
}
schedule
{
step
:
1200000
learning_rate
: .
000003
}
}
}
momentum_optimizer_value
:
0
.
9
}
use_moving_average
:
false
}
gradient_clipping_by_norm
:
10
.
0
fine_tune_checkpoint
:
"PATH_TO_BE_CONFIGURED/model.ckpt"
from_detection_checkpoint
:
true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps
:
200000
data_augmentation_options
{
random_horizontal_flip
{
}
}
}
train_input_reader
: {
tf_record_input_reader
{
input_path
:
"PATH_TO_BE_CONFIGURED/mscoco_train.record"
}
label_map_path
:
"PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
}
eval_config
: {
num_examples
:
8000
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals
:
10
}
eval_input_reader
: {
tf_record_input_reader
{
input_path
:
"PATH_TO_BE_CONFIGURED/mscoco_val.record"
}
label_map_path
:
"PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
shuffle
:
false
num_readers
:
1
num_epochs
:
1
}
object_detection/samples/configs/rfcn_resnet101_coco.config
0 → 100644
View file @
6024579b
# R-FCN with Resnet-101 (v1), configuration for MSCOCO Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.
model
{
faster_rcnn
{
num_classes
:
90
image_resizer
{
keep_aspect_ratio_resizer
{
min_dimension
:
600
max_dimension
:
1024
}
}
feature_extractor
{
type
:
'faster_rcnn_resnet101'
first_stage_features_stride
:
16
}
first_stage_anchor_generator
{
grid_anchor_generator
{
scales
: [
0
.
25
,
0
.
5
,
1
.
0
,
2
.
0
]
aspect_ratios
: [
0
.
5
,
1
.
0
,
2
.
0
]
height_stride
:
16
width_stride
:
16
}
}
first_stage_box_predictor_conv_hyperparams
{
op
:
CONV
regularizer
{
l2_regularizer
{
weight
:
0
.
0
}
}
initializer
{
truncated_normal_initializer
{
stddev
:
0
.
01
}
}
}
first_stage_nms_score_threshold
:
0
.
0
first_stage_nms_iou_threshold
:
0
.
7
first_stage_max_proposals
:
300
first_stage_localization_loss_weight
:
2
.
0
first_stage_objectness_loss_weight
:
1
.
0
second_stage_box_predictor
{
rfcn_box_predictor
{
conv_hyperparams
{
op
:
CONV
regularizer
{
l2_regularizer
{
weight
:
0
.
0
}
}
initializer
{
truncated_normal_initializer
{
stddev
:
0
.
01
}
}
}
crop_height
:
18
crop_width
:
18
num_spatial_bins_height
:
3
num_spatial_bins_width
:
3
}
}
second_stage_post_processing
{
batch_non_max_suppression
{
score_threshold
:
0
.
0
iou_threshold
:
0
.
6
max_detections_per_class
:
100
max_total_detections
:
300
}
score_converter
:
SOFTMAX
}
second_stage_localization_loss_weight
:
2
.
0
second_stage_classification_loss_weight
:
1
.
0
}
}
train_config
: {
batch_size
:
1
optimizer
{
momentum_optimizer
: {
learning_rate
: {
manual_step_learning_rate
{
initial_learning_rate
:
0
.
0003
schedule
{
step
:
0
learning_rate
: .
0003
}
schedule
{
step
:
900000
learning_rate
: .
00003
}
schedule
{
step
:
1200000
learning_rate
: .
000003
}
}
}
momentum_optimizer_value
:
0
.
9
}
use_moving_average
:
false
}
gradient_clipping_by_norm
:
10
.
0
fine_tune_checkpoint
:
"PATH_TO_BE_CONFIGURED/model.ckpt"
from_detection_checkpoint
:
true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps
:
200000
data_augmentation_options
{
random_horizontal_flip
{
}
}
}
train_input_reader
: {
tf_record_input_reader
{
input_path
:
"PATH_TO_BE_CONFIGURED/mscoco_train.record"
}
label_map_path
:
"PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
}
eval_config
: {
num_examples
:
8000
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals
:
10
}
eval_input_reader
: {
tf_record_input_reader
{
input_path
:
"PATH_TO_BE_CONFIGURED/mscoco_val.record"
}
label_map_path
:
"PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
shuffle
:
false
num_readers
:
1
num_epochs
:
1
}
object_detection/samples/configs/ssd_inception_v2_coco.config
0 → 100644
View file @
6024579b
# SSD with Inception v2 configuration for MSCOCO Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.
model
{
ssd
{
num_classes
:
90
box_coder
{
faster_rcnn_box_coder
{
y_scale
:
10
.
0
x_scale
:
10
.
0
height_scale
:
5
.
0
width_scale
:
5
.
0
}
}
matcher
{
argmax_matcher
{
matched_threshold
:
0
.
5
unmatched_threshold
:
0
.
5
ignore_thresholds
:
false
negatives_lower_than_unmatched
:
true
force_match_for_each_row
:
true
}
}
similarity_calculator
{
iou_similarity
{
}
}
anchor_generator
{
ssd_anchor_generator
{
num_layers
:
6
min_scale
:
0
.
2
max_scale
:
0
.
95
aspect_ratios
:
1
.
0
aspect_ratios
:
2
.
0
aspect_ratios
:
0
.
5
aspect_ratios
:
3
.
0
aspect_ratios
:
0
.
3333
reduce_boxes_in_lowest_layer
:
true
}
}
image_resizer
{
fixed_shape_resizer
{
height
:
300
width
:
300
}
}
box_predictor
{
convolutional_box_predictor
{
min_depth
:
0
max_depth
:
0
num_layers_before_predictor
:
0
use_dropout
:
false
dropout_keep_probability
:
0
.
8
kernel_size
:
3
box_code_size
:
4
apply_sigmoid_to_scores
:
false
conv_hyperparams
{
activation
:
RELU_6
,
regularizer
{
l2_regularizer
{
weight
:
0
.
00004
}
}
initializer
{
truncated_normal_initializer
{
stddev
:
0
.
03
mean
:
0
.
0
}
}
}
}
}
feature_extractor
{
type
:
'ssd_inception_v2'
min_depth
:
16
depth_multiplier
:
1
.
0
conv_hyperparams
{
activation
:
RELU_6
,
regularizer
{
l2_regularizer
{
weight
:
0
.
00004
}
}
initializer
{
truncated_normal_initializer
{
stddev
:
0
.
03
mean
:
0
.
0
}
}
batch_norm
{
train
:
true
,
scale
:
true
,
center
:
true
,
decay
:
0
.
9997
,
epsilon
:
0
.
001
,
}
}
}
loss
{
classification_loss
{
weighted_sigmoid
{
anchorwise_output
:
true
}
}
localization_loss
{
weighted_smooth_l1
{
anchorwise_output
:
true
}
}
hard_example_miner
{
num_hard_examples
:
3000
iou_threshold
:
0
.
99
loss_type
:
CLASSIFICATION
max_negatives_per_positive
:
3
min_negatives_per_image
:
0
}
classification_weight
:
1
.
0
localization_weight
:
1
.
0
}
normalize_loss_by_num_matches
:
true
post_processing
{
batch_non_max_suppression
{
score_threshold
:
1
e
-
8
iou_threshold
:
0
.
6
max_detections_per_class
:
100
max_total_detections
:
100
}
score_converter
:
SIGMOID
}
}
}
train_config
: {
batch_size
:
24
optimizer
{
rms_prop_optimizer
: {
learning_rate
: {
exponential_decay_learning_rate
{
initial_learning_rate
:
0
.
004
decay_steps
:
800720
decay_factor
:
0
.
95
}
}
momentum_optimizer_value
:
0
.
9
decay
:
0
.
9
epsilon
:
1
.
0
}
}
fine_tune_checkpoint
:
"PATH_TO_BE_CONFIGURED/model.ckpt"
from_detection_checkpoint
:
true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps
:
200000
data_augmentation_options
{
random_horizontal_flip
{
}
}
data_augmentation_options
{
ssd_random_crop
{
}
}
}
train_input_reader
: {
tf_record_input_reader
{
input_path
:
"PATH_TO_BE_CONFIGURED/mscoco_train.record"
}
label_map_path
:
"PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
}
eval_config
: {
num_examples
:
8000
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals
:
10
}
eval_input_reader
: {
tf_record_input_reader
{
input_path
:
"PATH_TO_BE_CONFIGURED/mscoco_val.record"
}
label_map_path
:
"PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
shuffle
:
false
num_readers
:
1
num_epochs
:
1
}
object_detection/samples/configs/ssd_mobilenet_v1_coco.config
0 → 100644
View file @
6024579b
# SSD with Mobilenet v1 configuration for MSCOCO Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.
model
{
ssd
{
num_classes
:
90
box_coder
{
faster_rcnn_box_coder
{
y_scale
:
10
.
0
x_scale
:
10
.
0
height_scale
:
5
.
0
width_scale
:
5
.
0
}
}
matcher
{
argmax_matcher
{
matched_threshold
:
0
.
5
unmatched_threshold
:
0
.
5
ignore_thresholds
:
false
negatives_lower_than_unmatched
:
true
force_match_for_each_row
:
true
}
}
similarity_calculator
{
iou_similarity
{
}
}
anchor_generator
{
ssd_anchor_generator
{
num_layers
:
6
min_scale
:
0
.
2
max_scale
:
0
.
95
aspect_ratios
:
1
.
0
aspect_ratios
:
2
.
0
aspect_ratios
:
0
.
5
aspect_ratios
:
3
.
0
aspect_ratios
:
0
.
3333
}
}
image_resizer
{
fixed_shape_resizer
{
height
:
300
width
:
300
}
}
box_predictor
{
convolutional_box_predictor
{
min_depth
:
0
max_depth
:
0
num_layers_before_predictor
:
0
use_dropout
:
false
dropout_keep_probability
:
0
.
8
kernel_size
:
1
box_code_size
:
4
apply_sigmoid_to_scores
:
false
conv_hyperparams
{
activation
:
RELU_6
,
regularizer
{
l2_regularizer
{
weight
:
0
.
00004
}
}
initializer
{
truncated_normal_initializer
{
stddev
:
0
.
03
mean
:
0
.
0
}
}
batch_norm
{
train
:
true
,
scale
:
true
,
center
:
true
,
decay
:
0
.
9997
,
epsilon
:
0
.
001
,
}
}
}
}
feature_extractor
{
type
:
'ssd_mobilenet_v1'
min_depth
:
16
depth_multiplier
:
1
.
0
conv_hyperparams
{
activation
:
RELU_6
,
regularizer
{
l2_regularizer
{
weight
:
0
.
00004
}
}
initializer
{
truncated_normal_initializer
{
stddev
:
0
.
03
mean
:
0
.
0
}
}
batch_norm
{
train
:
true
,
scale
:
true
,
center
:
true
,
decay
:
0
.
9997
,
epsilon
:
0
.
001
,
}
}
}
loss
{
classification_loss
{
weighted_sigmoid
{
anchorwise_output
:
true
}
}
localization_loss
{
weighted_smooth_l1
{
anchorwise_output
:
true
}
}
hard_example_miner
{
num_hard_examples
:
3000
iou_threshold
:
0
.
99
loss_type
:
CLASSIFICATION
max_negatives_per_positive
:
3
min_negatives_per_image
:
0
}
classification_weight
:
1
.
0
localization_weight
:
1
.
0
}
normalize_loss_by_num_matches
:
true
post_processing
{
batch_non_max_suppression
{
score_threshold
:
1
e
-
8
iou_threshold
:
0
.
6
max_detections_per_class
:
100
max_total_detections
:
100
}
score_converter
:
SIGMOID
}
}
}
train_config
: {
batch_size
:
24
optimizer
{
rms_prop_optimizer
: {
learning_rate
: {
exponential_decay_learning_rate
{
initial_learning_rate
:
0
.
004
decay_steps
:
800720
decay_factor
:
0
.
95
}
}
momentum_optimizer_value
:
0
.
9
decay
:
0
.
9
epsilon
:
1
.
0
}
}
fine_tune_checkpoint
:
"PATH_TO_BE_CONFIGURED/model.ckpt"
from_detection_checkpoint
:
true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps
:
200000
data_augmentation_options
{
random_horizontal_flip
{
}
}
data_augmentation_options
{
ssd_random_crop
{
}
}
}
train_input_reader
: {
tf_record_input_reader
{
input_path
:
"PATH_TO_BE_CONFIGURED/mscoco_train.record"
}
label_map_path
:
"PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
}
eval_config
: {
num_examples
:
8000
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals
:
10
}
eval_input_reader
: {
tf_record_input_reader
{
input_path
:
"PATH_TO_BE_CONFIGURED/mscoco_val.record"
}
label_map_path
:
"PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
shuffle
:
false
num_readers
:
1
num_epochs
:
1
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment