Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
5f71a455
Commit
5f71a455
authored
Jul 30, 2020
by
Kaushik Shivakumar
Browse files
fix
parent
8948ba3f
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
177 additions
and
7 deletions
+177
-7
research/object_detection/core/region_similarity_calculator.py
...rch/object_detection/core/region_similarity_calculator.py
+1
-1
research/object_detection/core/region_similarity_calculator_test.py
...bject_detection/core/region_similarity_calculator_test.py
+1
-1
research/object_detection/core/target_assigner.py
research/object_detection/core/target_assigner.py
+1
-1
research/object_detection/core/target_assigner_test.py
research/object_detection/core/target_assigner_test.py
+7
-4
research/object_detection/matchers/hungarian_matcher.py
research/object_detection/matchers/hungarian_matcher.py
+63
-0
research/object_detection/matchers/hungarian_matcher_tf2_test.py
...h/object_detection/matchers/hungarian_matcher_tf2_test.py
+104
-0
No files found.
research/object_detection/core/region_similarity_calculator.py
View file @
5f71a455
...
...
@@ -86,7 +86,7 @@ class IouSimilarity(RegionSimilarityCalculator):
"""
return
box_list_ops
.
iou
(
boxlist1
,
boxlist2
)
class
DETRSimil
i
arity
(
RegionSimilarityCalculator
):
class
DETRSimilarity
(
RegionSimilarityCalculator
):
"""Class to compute similarity for the Detection Transformer model.
This class computes pairwise similarity between two BoxLists using a weighted
...
...
research/object_detection/core/region_similarity_calculator_test.py
View file @
5f71a455
...
...
@@ -101,7 +101,7 @@ class RegionSimilarityCalculatorTest(test_case.TestCase):
predicted_labels
=
tf
.
constant
([[
0.0
,
1000.0
],
[
1000.0
,
0.0
]])
boxes1
=
box_list
.
BoxList
(
corners1
)
boxes2
=
box_list
.
BoxList
(
corners2
)
detr_similarity_calculator
=
region_similarity_calculator
.
DETRSimil
i
arity
()
detr_similarity_calculator
=
region_similarity_calculator
.
DETRSimilarity
()
detr_similarity
=
detr_similarity_calculator
.
compare
(
boxes1
,
boxes2
,
None
,
groundtruth_labels
,
predicted_labels
)
return
detr_similarity
exp_output
=
[[
2.0
,
-
2.0
/
3.0
+
1.0
-
20.0
]]
...
...
research/object_detection/core/target_assigner.py
View file @
5f71a455
...
...
@@ -444,7 +444,7 @@ def create_target_assigner(reference, stage=None,
box_coder_instance
=
faster_rcnn_box_coder
.
FasterRcnnBoxCoder
()
elif
reference
==
'DETR'
:
similarity_calc
=
sim_calc
.
DETRSimil
i
arity
()
similarity_calc
=
sim_calc
.
DETRSimilarity
()
matcher
=
hungarian_matcher
.
HungarianBipartiteMatcher
()
box_coder_instance
=
None
...
...
research/object_detection/core/target_assigner_test.py
View file @
5f71a455
...
...
@@ -24,6 +24,7 @@ from object_detection.core import region_similarity_calculator
from
object_detection.core
import
standard_fields
as
fields
from
object_detection.core
import
target_assigner
as
targetassigner
from
object_detection.matchers
import
argmax_matcher
from
object_detection.matchers
import
hungarian_matcher
from
object_detection.utils
import
np_box_ops
from
object_detection.utils
import
test_case
from
object_detection.utils
import
tf_version
...
...
@@ -1924,9 +1925,8 @@ class CenterNetMaskTargetAssignerTest(test_case.TestCase):
def
test_assign_detr
(
self
):
def
graph_fn
(
anchor_means
,
groundtruth_box_corners
):
similarity_calc
=
region_similarity_calculator
.
DETRSimilarity
()
matcher
=
argmax_matcher
.
ArgMaxMatcher
(
matched_threshold
=
0.5
,
unmatched_threshold
=
0.5
)
box_coder
=
mean_stddev_box_coder
.
MeanStddevBoxCoder
(
stddev
=
0.1
)
matcher
=
hungarian_matcher
.
HungarianBipartiteMatcher
()
box_coder
=
None
target_assigner
=
targetassigner
.
TargetAssigner
(
similarity_calc
,
matcher
,
box_coder
)
anchors_boxlist
=
box_list
.
BoxList
(
anchor_means
)
...
...
@@ -1936,12 +1936,15 @@ class CenterNetMaskTargetAssignerTest(test_case.TestCase):
(
cls_targets
,
cls_weights
,
reg_targets
,
reg_weights
,
_
)
=
result
return
(
cls_targets
,
cls_weights
,
reg_targets
,
reg_weights
)
anchor_means
=
np
.
array
([[
0.0
,
0.0
,
0.
5
,
0.
5
],
anchor_means
=
np
.
array
([[
0.0
,
0.0
,
0.
2
,
0.
2
],
[
0.5
,
0.5
,
1.0
,
0.8
],
[
0
,
0.5
,
.
5
,
1.0
]],
dtype
=
np
.
float32
)
groundtruth_box_corners
=
np
.
array
([[
0.0
,
0.0
,
0.5
,
0.5
],
[
0.5
,
0.5
,
0.9
,
0.9
]],
dtype
=
np
.
float32
)
predicted_labels
=
np
.
array
([[
7
,
3
],
[
2
,
9
],
[
1
,
5
]])
groundtruth
=
np
.
array
([[
0
,
1
],
[
2
,
9
],
[
1
,
5
]])
exp_cls_targets
=
[[
1
],
[
1
],
[
0
]]
exp_cls_weights
=
[[
1
],
[
1
],
[
1
]]
exp_reg_targets
=
[[
0
,
0
,
0
,
0
],
...
...
research/object_detection/matchers/hungarian_matcher.py
0 → 100644
View file @
5f71a455
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Hungarian bipartite matcher implementation."""
import
tensorflow.compat.v1
as
tf
import
numpy
as
np
from
object_detection.core
import
matcher
from
scipy.optimize
import
linear_sum_assignment
class
HungarianBipartiteMatcher
(
matcher
.
Matcher
):
"""Wraps a Hungarian bipartite matcher into TensorFlow."""
def
__init__
(
self
):
"""Constructs a Matcher."""
super
(
HungarianBipartiteMatcher
,
self
).
__init__
()
def
_match
(
self
,
similarity_matrix
,
valid_rows
):
"""Optimally bipartite matches a collection rows and columns.
Args:
similarity_matrix: Float tensor of shape [N, M] with pairwise similarity
where higher values mean more similar.
valid_rows: A boolean tensor of shape [N] indicating the rows that are
valid.
Returns:
match_results: int32 tensor of shape [M] with match_results[i]=-1
meaning that column i is not matched and otherwise that it is matched to
row match_results[i].
"""
valid_row_sim_matrix
=
tf
.
gather
(
similarity_matrix
,
tf
.
squeeze
(
tf
.
where
(
valid_rows
),
axis
=-
1
))
distance_matrix
=
-
1
*
valid_row_sim_matrix
def
numpy_wrapper
(
inputs
):
def
numpy_matching
(
input_matrix
):
row_indices
,
col_indices
=
linear_sum_assignment
(
input_matrix
)
match_results
=
np
.
full
(
input_matrix
.
shape
[
1
],
-
1
)
match_results
[
col_indices
]
=
row_indices
return
match_results
.
astype
(
np
.
int32
)
return
tf
.
numpy_function
(
numpy_matching
,
inputs
,
Tout
=
[
tf
.
int32
])
matching_result
=
tf
.
autograph
.
experimental
.
do_not_convert
(
numpy_wrapper
)([
distance_matrix
])
return
tf
.
reshape
(
matching_result
,
[
-
1
])
research/object_detection/matchers/hungarian_matcher_tf2_test.py
0 → 100644
View file @
5f71a455
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.core.bipartite_matcher."""
import
unittest
import
numpy
as
np
import
tensorflow.compat.v1
as
tf
from
object_detection.utils
import
test_case
from
object_detection.utils
import
tf_version
if
tf_version
.
is_tf2
():
from
object_detection.matchers
import
hungarian_matcher
# pylint: disable=g-import-not-at-top
@
unittest
.
skipIf
(
tf_version
.
is_tf1
(),
'Skipping TF2.X only test.'
)
class
HungarianBipartiteMatcherTest
(
test_case
.
TestCase
):
def
test_get_expected_matches_when_all_rows_are_valid
(
self
):
similarity_matrix
=
np
.
array
([[
0.50
,
0.1
,
0.8
],
[
0.15
,
0.2
,
0.3
]],
dtype
=
np
.
float32
)
valid_rows
=
np
.
ones
([
2
],
dtype
=
np
.
bool
)
expected_match_results
=
[
-
1
,
1
,
0
]
matcher
=
hungarian_matcher
.
HungarianBipartiteMatcher
()
match_results_out
=
matcher
.
match
(
similarity_matrix
,
valid_rows
=
valid_rows
)
self
.
assertAllEqual
(
match_results_out
.
_match_results
.
numpy
(),
expected_match_results
)
def
test_get_expected_matches_with_all_rows_be_default
(
self
):
similarity_matrix
=
np
.
array
([[
0.50
,
0.1
,
0.8
],
[
0.15
,
0.2
,
0.3
]],
dtype
=
np
.
float32
)
expected_match_results
=
[
-
1
,
1
,
0
]
matcher
=
hungarian_matcher
.
HungarianBipartiteMatcher
()
match_results_out
=
matcher
.
match
(
similarity_matrix
)
self
.
assertAllEqual
(
match_results_out
.
_match_results
.
numpy
(),
expected_match_results
)
def
test_get_no_matches_with_zero_valid_rows
(
self
):
similarity_matrix
=
np
.
array
([[
0.50
,
0.1
,
0.8
],
[
0.15
,
0.2
,
0.3
]],
dtype
=
np
.
float32
)
valid_rows
=
np
.
zeros
([
2
],
dtype
=
np
.
bool
)
expected_match_results
=
[
-
1
,
-
1
,
-
1
]
matcher
=
hungarian_matcher
.
HungarianBipartiteMatcher
()
match_results_out
=
matcher
.
match
(
similarity_matrix
,
valid_rows
=
valid_rows
)
self
.
assertAllEqual
(
match_results_out
.
_match_results
.
numpy
(),
expected_match_results
)
def
test_get_expected_matches_with_only_one_valid_row
(
self
):
similarity_matrix
=
np
.
array
([[
0.50
,
0.1
,
0.8
],
[
0.15
,
0.2
,
0.3
]],
dtype
=
np
.
float32
)
valid_rows
=
np
.
array
([
True
,
False
],
dtype
=
np
.
bool
)
expected_match_results
=
[
-
1
,
-
1
,
0
]
matcher
=
hungarian_matcher
.
HungarianBipartiteMatcher
()
match_results_out
=
matcher
.
match
(
similarity_matrix
,
valid_rows
=
valid_rows
)
self
.
assertAllEqual
(
match_results_out
.
_match_results
.
numpy
(),
expected_match_results
)
def
test_get_expected_matches_with_only_one_valid_row_at_bottom
(
self
):
similarity_matrix
=
np
.
array
([[
0.15
,
0.2
,
0.3
],
[
0.50
,
0.1
,
0.8
]],
dtype
=
np
.
float32
)
valid_rows
=
np
.
array
([
False
,
True
],
dtype
=
np
.
bool
)
expected_match_results
=
[
-
1
,
-
1
,
0
]
matcher
=
hungarian_matcher
.
HungarianBipartiteMatcher
()
match_results_out
=
matcher
.
match
(
similarity_matrix
,
valid_rows
=
valid_rows
)
self
.
assertAllEqual
(
match_results_out
.
_match_results
.
numpy
(),
expected_match_results
)
def
test_get_expected_matches_with_two_valid_rows
(
self
):
similarity_matrix
=
np
.
array
([[
0.15
,
0.2
,
0.3
],
[
0.50
,
0.1
,
0.8
],
[
0.84
,
0.32
,
0.2
]],
dtype
=
np
.
float32
)
valid_rows
=
np
.
array
([
True
,
False
,
True
],
dtype
=
np
.
bool
)
expected_match_results
=
[
1
,
-
1
,
0
]
matcher
=
hungarian_matcher
.
HungarianBipartiteMatcher
()
match_results_out
=
matcher
.
match
(
similarity_matrix
,
valid_rows
=
valid_rows
)
self
.
assertAllEqual
(
match_results_out
.
_match_results
.
numpy
(),
expected_match_results
)
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment