Commit 5f71a455 authored by Kaushik Shivakumar's avatar Kaushik Shivakumar
Browse files

fix

parent 8948ba3f
......@@ -86,7 +86,7 @@ class IouSimilarity(RegionSimilarityCalculator):
"""
return box_list_ops.iou(boxlist1, boxlist2)
class DETRSimiliarity(RegionSimilarityCalculator):
class DETRSimilarity(RegionSimilarityCalculator):
"""Class to compute similarity for the Detection Transformer model.
This class computes pairwise similarity between two BoxLists using a weighted
......
......@@ -101,7 +101,7 @@ class RegionSimilarityCalculatorTest(test_case.TestCase):
predicted_labels = tf.constant([[0.0, 1000.0], [1000.0, 0.0]])
boxes1 = box_list.BoxList(corners1)
boxes2 = box_list.BoxList(corners2)
detr_similarity_calculator = region_similarity_calculator.DETRSimiliarity()
detr_similarity_calculator = region_similarity_calculator.DETRSimilarity()
detr_similarity = detr_similarity_calculator.compare(boxes1, boxes2, None, groundtruth_labels, predicted_labels)
return detr_similarity
exp_output = [[2.0, -2.0/3.0 + 1.0 - 20.0]]
......
......@@ -444,7 +444,7 @@ def create_target_assigner(reference, stage=None,
box_coder_instance = faster_rcnn_box_coder.FasterRcnnBoxCoder()
elif reference == 'DETR':
similarity_calc = sim_calc.DETRSimiliarity()
similarity_calc = sim_calc.DETRSimilarity()
matcher = hungarian_matcher.HungarianBipartiteMatcher()
box_coder_instance = None
......
......@@ -24,6 +24,7 @@ from object_detection.core import region_similarity_calculator
from object_detection.core import standard_fields as fields
from object_detection.core import target_assigner as targetassigner
from object_detection.matchers import argmax_matcher
from object_detection.matchers import hungarian_matcher
from object_detection.utils import np_box_ops
from object_detection.utils import test_case
from object_detection.utils import tf_version
......@@ -1924,9 +1925,8 @@ class CenterNetMaskTargetAssignerTest(test_case.TestCase):
def test_assign_detr(self):
def graph_fn(anchor_means, groundtruth_box_corners):
similarity_calc = region_similarity_calculator.DETRSimilarity()
matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
unmatched_threshold=0.5)
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1)
matcher = hungarian_matcher.HungarianBipartiteMatcher()
box_coder = None
target_assigner = targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder)
anchors_boxlist = box_list.BoxList(anchor_means)
......@@ -1936,12 +1936,15 @@ class CenterNetMaskTargetAssignerTest(test_case.TestCase):
(cls_targets, cls_weights, reg_targets, reg_weights, _) = result
return (cls_targets, cls_weights, reg_targets, reg_weights)
anchor_means = np.array([[0.0, 0.0, 0.5, 0.5],
anchor_means = np.array([[0.0, 0.0, 0.2, 0.2],
[0.5, 0.5, 1.0, 0.8],
[0, 0.5, .5, 1.0]], dtype=np.float32)
groundtruth_box_corners = np.array([[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.9, 0.9]],
dtype=np.float32)
predicted_labels = np.array([[7, 3], [2, 9], [1, 5]])
groundtruth = np.array([[0, 1], [2, 9], [1, 5]])
exp_cls_targets = [[1], [1], [0]]
exp_cls_weights = [[1], [1], [1]]
exp_reg_targets = [[0, 0, 0, 0],
......
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Hungarian bipartite matcher implementation."""
import tensorflow.compat.v1 as tf
import numpy as np
from object_detection.core import matcher
from scipy.optimize import linear_sum_assignment
class HungarianBipartiteMatcher(matcher.Matcher):
"""Wraps a Hungarian bipartite matcher into TensorFlow."""
def __init__(self):
"""Constructs a Matcher."""
super(HungarianBipartiteMatcher, self).__init__()
def _match(self, similarity_matrix, valid_rows):
"""Optimally bipartite matches a collection rows and columns.
Args:
similarity_matrix: Float tensor of shape [N, M] with pairwise similarity
where higher values mean more similar.
valid_rows: A boolean tensor of shape [N] indicating the rows that are
valid.
Returns:
match_results: int32 tensor of shape [M] with match_results[i]=-1
meaning that column i is not matched and otherwise that it is matched to
row match_results[i].
"""
valid_row_sim_matrix = tf.gather(similarity_matrix,
tf.squeeze(tf.where(valid_rows), axis=-1))
distance_matrix = -1 * valid_row_sim_matrix
def numpy_wrapper(inputs):
def numpy_matching(input_matrix):
row_indices, col_indices = linear_sum_assignment(input_matrix)
match_results = np.full(input_matrix.shape[1], -1)
match_results[col_indices] = row_indices
return match_results.astype(np.int32)
return tf.numpy_function(numpy_matching, inputs, Tout=[tf.int32])
matching_result = tf.autograph.experimental.do_not_convert(
numpy_wrapper)([distance_matrix])
return tf.reshape(matching_result, [-1])
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.core.bipartite_matcher."""
import unittest
import numpy as np
import tensorflow.compat.v1 as tf
from object_detection.utils import test_case
from object_detection.utils import tf_version
if tf_version.is_tf2():
from object_detection.matchers import hungarian_matcher # pylint: disable=g-import-not-at-top
@unittest.skipIf(tf_version.is_tf1(), 'Skipping TF2.X only test.')
class HungarianBipartiteMatcherTest(test_case.TestCase):
def test_get_expected_matches_when_all_rows_are_valid(self):
similarity_matrix = np.array([[0.50, 0.1, 0.8], [0.15, 0.2, 0.3]],
dtype=np.float32)
valid_rows = np.ones([2], dtype=np.bool)
expected_match_results = [-1, 1, 0]
matcher = hungarian_matcher.HungarianBipartiteMatcher()
match_results_out = matcher.match(similarity_matrix, valid_rows=valid_rows)
self.assertAllEqual(match_results_out._match_results.numpy(),
expected_match_results)
def test_get_expected_matches_with_all_rows_be_default(self):
similarity_matrix = np.array([[0.50, 0.1, 0.8], [0.15, 0.2, 0.3]],
dtype=np.float32)
expected_match_results = [-1, 1, 0]
matcher = hungarian_matcher.HungarianBipartiteMatcher()
match_results_out = matcher.match(similarity_matrix)
self.assertAllEqual(match_results_out._match_results.numpy(),
expected_match_results)
def test_get_no_matches_with_zero_valid_rows(self):
similarity_matrix = np.array([[0.50, 0.1, 0.8], [0.15, 0.2, 0.3]],
dtype=np.float32)
valid_rows = np.zeros([2], dtype=np.bool)
expected_match_results = [-1, -1, -1]
matcher = hungarian_matcher.HungarianBipartiteMatcher()
match_results_out = matcher.match(similarity_matrix, valid_rows=valid_rows)
self.assertAllEqual(match_results_out._match_results.numpy(),
expected_match_results)
def test_get_expected_matches_with_only_one_valid_row(self):
similarity_matrix = np.array([[0.50, 0.1, 0.8], [0.15, 0.2, 0.3]],
dtype=np.float32)
valid_rows = np.array([True, False], dtype=np.bool)
expected_match_results = [-1, -1, 0]
matcher = hungarian_matcher.HungarianBipartiteMatcher()
match_results_out = matcher.match(similarity_matrix, valid_rows=valid_rows)
self.assertAllEqual(match_results_out._match_results.numpy(),
expected_match_results)
def test_get_expected_matches_with_only_one_valid_row_at_bottom(self):
similarity_matrix = np.array([[0.15, 0.2, 0.3], [0.50, 0.1, 0.8]],
dtype=np.float32)
valid_rows = np.array([False, True], dtype=np.bool)
expected_match_results = [-1, -1, 0]
matcher = hungarian_matcher.HungarianBipartiteMatcher()
match_results_out = matcher.match(similarity_matrix, valid_rows=valid_rows)
self.assertAllEqual(match_results_out._match_results.numpy(),
expected_match_results)
def test_get_expected_matches_with_two_valid_rows(self):
similarity_matrix = np.array([[0.15, 0.2, 0.3], [0.50, 0.1, 0.8],
[0.84, 0.32, 0.2]],
dtype=np.float32)
valid_rows = np.array([True, False, True], dtype=np.bool)
expected_match_results = [1, -1, 0]
matcher = hungarian_matcher.HungarianBipartiteMatcher()
match_results_out = matcher.match(similarity_matrix, valid_rows=valid_rows)
self.assertAllEqual(match_results_out._match_results.numpy(),
expected_match_results)
if __name__ == '__main__':
tf.test.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment